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1 PROBLEM DOMAIN

People who are blind experience challenges when performing everyday tasks that are heavily dependent on
vision such as identifying objects, clothing, and packages of food as well as entering text on a smartphone using
touchscreen keyboards. To overcome these challenges, they would typically use other sensory channels such
as touch, taste, smell, and hearing. For example, they use a screen reading application such as VoiceOver to
identify keys on a touchscreen keyboard or Braille to recognize everyday objects (e.g., by attaching adhesive
Braille labels to them). Machine learning (ML) applications such as automatic speech recognition (ASR) and
computer vision can make it easier for this population to carry out such tasks by allowing access to the visual
world and interactions through preferred modalities. Prior work [2, 34] has shown that indeed speech input is
the preferred method for text input on a mobile device for blind people. Also, many computer vision application
have been proposed to enable these users navigate in unfamiliar indoor environments [3, 30], access printed
text [5, 25], and identify objects of interest [1, 20, 27] using the built-in cameras on their mobile devices.
Although advances in ML promise improved accuracies, ML applications are inherently error prone. The
accuracy of ASR systems is reaching 5.1% word error rate for English [33]. In computer vision, the top-5
performance of image classifiers has only 3.7% error rate [26]. Given that these numbers are averages reported
on benchmarking datasets, users may face additional challenges when these models are deployed in real-world
application especially in conditions deviating from those that the models were trained on. For example, ASR
errors can occur due to speaker variation, disfluency, background noise, ambiguity of words, and mistakes from
users [14, 18]. Also, object recognition errors, even though models are typically trained on limited numbers of
objects, could occur due to lack of discriminative characteristics, lighting conditions, and reflective surfaces, but
more so for blind users due to their challenges in photo taking. These could result in different background clutter,
scale, viewpoints, occlusion, and image quality than in photos taken by sighted users used in training [20, 35].
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(a) Part I: Reviewing output from ASR (b) Part II: Training object recognizer
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Fig. 1. Two parts of my research on human-error interactions in Al application for the blind.

Even when enabling the end-user to provide the training examples in order to personalize the recognition task
(e.g., teachable object recognizers for the blind [20, 23]), errors could result due to the challenges that these users
face in providing high-quality or well-framed images as training examples.

While both ASR and object recognition systems can benefit blind people, the need for visual inspection of
their errors has hold back their usability for this population. For example, reviewing and editing text to correct
ASR errors has been known as a bottleneck in text entry through speech not only for sighted users [15, 21, 28]
but more so for blind users [2]. Typically, they have to perform these steps non-visually, though voice-only
interactions. User interfaces and multimodal interactions that address these challenges (i.e., identifying, avoiding,
and handling errors) would be of value for accessibility researchers designing novel assistive technologies that
employ ML and Al models.

Driven by the above limitations in the field, the focus of my research is to improve human-error interactions for
blind people when using ML applications. My work explores user interfaces across two core Al areas: speech and
vision. First, it investigates the challenge of identifying and reviewing ASR errors through audio-only interactions
as shown in Figure 1a. Second, it examines methods to help blind users provide good training examples for
teachable object recognizers as shown in Figure 1b.

While my research on accessible human-error interaction is focused on speech and image motivated by a
specific user group, the methods and techniques in this work should be applicable to other domains within and
beyond accessibility where errors in intelligent systems are either introduced by the user through teachable
interfaces (e.g., teachable machines for accessibility [19]) or can be visually inspected only (e.g., indoor localization,
obstacle detection, and facial expression recognition). Also, to allow for more generalizable findings, my research
questions are explored with sighted participants as well and compared to those obtained from blind participants.
Other contributions of this work include: (1) an experimental framework for measuring the ability of identifying
ASR errors through audio-only interactions, (2) evaluating the effect of different manipulations of synthesized
speech on ASR error identification, (3) collection of empirical data on how users with little knowledge on ML
interact with teachable machines such as personal object recognizer, and (4) developing interactive guidance to
help blind users take good training photos.

2 RELATED WORK

With a focus on error-handling methods, this section discusses related work on ML applications where blind
users interact with two different types of data: speech and images.

2.1 Reviewing and Editing Text from Speech Input

Reviewing and editing has been known as a bottleneck in the text entry process using speech input for both
sighted and blind users. The correction of ASR errors were over twice as long as the entry time when sighted
users entered text with speech input on a desktop computer [21]. Experienced users were able to achieve faster
text entry speed by correcting ASR errors faster than novice users when speech input was used by blind users on a
desktop [15]. While novice users re-dictated to correct errors and wasted time due to the repeated misrecognition



of redictation, experienced users achieved faster text entry rate by switching modality of entering text from
speech to keyboard and mouse. Blind users also spent 80% of text entry time editing text from speech input [2].
Azenot’s study showed that identifying ASR errors is a challenging task for blind users because ASR errors sound
similar to users’ original speech input. However, the ability of identifying ASR errors has not been evaluated
quantitatively.

Correcting ASR errors requires first recognizing errors in inputted text, then editing. While my research
explores the former, prior studies on editing text from speech input mostly focused on correcting ASR errors
with the assumption that users can review the text visually. Many studies combined speech input with other
modalities such as pen gestures, touchscreen, or spelling out individual letters [11-13]. Predicting alternative
word candidates for correcting ASR errors has been used with keyboard and touchscreen input to allow users
to edit words easy and fast [17, 22, 24, 32]. However, these studies depend on the visual feedback which is not
accessible to blind users.

2.2 Teachable Object Recognizers

Prior work in object recognizers for blind users usually spans across computer vision systems, crowdsourced
platforms, or a hybrid combination. For example, VizWiz [8], BeMyEyes [6], and BeSpecular [7] are crowd-
powered object recognition systems where users ask questions with image or real-time videos depicting unknown
objects to the user and crowd-workers provide descriptions. Though such crowd-powered applications are a
feasible approach, they raise privacy issues since blind individuals have to share images and videos often from
their personal environment with unknown crowds, which may not be available 24/7. Generic object recognizer,
on the other hand, can enable these users to recognize objects without sighted help [1, 27] thus ensuring privacy.
However, object recognizers trained on large available datasets tend to be limited on the number of classes that
they can support. Therefore, they have limited application especially for distinguishing fine-grained instances for
everyday objects of interest across all blind people.

Teachable object recognizers [20], can allow blind users to personalize the capabilities of an object recognizer
by providing a small number of examples for each object of interest in their environment. An early example
of this is LookTel [23]; though it was limited in the sense that sighted help was required to get a single high
quality training example. As a follow up, Kacorri et al. explored whether it was feasible for the blind users do the
training by themselves instead. One of the major challenges identified in this prior work was the effect that bad
object framing may have in performance degradation since blind participants could not visually inspect their
training examples. My research focuses on improving such teachable interfaces through accessible interactions
for obtaining better training examples that can reduce errors in object recognizers.

3 METHODOLOGICAL APPROACH

As summarized in Figure 1, the goal of my research is to improve the experience of blind users with Al applications
by exploring effective human-error interactions in two contexts: reviewing ASR errors in text entry through
speech (Part I) and providing good training example in teachable object recognizers (Part II). My work employs
a mixed-methods approach. In Part I, the experience of identifying ASR errors was investigated through semi-
structured interviews and custom experimental testbeds designed to quantify error recognition accuracies and
strategies through both a crowdsourcing platform and a lab setup. In Part II, interaction patterns of non-experts’
perception of machine teaching will be explored through a web-application that support remote training of
teachable object recognizers. Both training data and user feedback obtained from crowdsourced participants will
be employed in the design of novel sound interactions guiding users in obtaining better training examples. Our
interactions will be evaluated in the context of a mobile app, that allows blind users train their personal object
recognizer in a real-world setting.



Specifically, Part I explores challenges in identifying ASR errors through audio-only interactions through
a series of five studies. Since experiences and listening rates for synthesized speech differ across sighted and
blind participants due to experience with a screen reader [9], we decouple the ability to identify ASR errors in
this context based in experience with a screen reader. Therefore, the first four of these studies involve sighted
participants recruited through Amazon mTurk [31] not using a screen reader [16]. Findings and insights from
these initial studies are used to guide the experimental design for a follow-up in depth study! that investigates
experiences and responses across sighted and blind participants in a lab setup. In both cases, error-identification
accuracies are measured with carefully engineered stimuli under a number of controlled conditions.

Part II, which is work in progress, focuses on investigating effective interactions for detecting and reducing
errors in the context of teachable object recognizers. In this case, users are not simply the consumers of model
predictions but can have a more active role by tweaking the behavior of the model with their training examples.
Thus new errors can be introduced that are related to their training examples. We decouple these errors based on
a) inexperience in machine teaching and b) challenges in photo-taking. We explore the first case with a large-
scale study 2 with sighted participants recruited through Amazon mTurk, where we measure accuracies of the
user-trained models and qualitatively identify training strategies and their relationship with model performance.
The findings and insights from this study will inform the design of interactions for a teachable object recognizer
mobile app that will be later evaluated across sighted and blind participants.

4 COMPLETED WORK: REVIEWING ASR ERRORS IN TEXT ENTRY THROUGH SPEECH (PART 1)

Insights from user studies with sighted participants in the lab and a crowdsourced platform inform the design of
a lab-based user study exploring responses across sighted and blind participants.

4.1 Characterizing Challenges in ASR Error Identification

Though the challenge of identifying ASR errors through audio-only interactions was observed in Azenkot’s study
[2], the accuracy of ASR error identification was not evaluated in quantitative way. The accuracy measured in
this work can serve as a baseline performance for future research on improving the interface for presenting ASR
result to users. Different methods of manipulating synthesized speech of ASR result were shown as possible
methods to help users identify ASR errors more accurately.

As a first step of Part I, a series of four studies is conducted to characterize this challenge by measuring the
accuracy of identifying ASR errors when sighted participants review text through audio-only interactions [16].
The first controlled-lab study is conducted to identify the type of ASR errors that users were likely to miss and
measure the baseline accuracy of identifying ASR errors. Participants were asked to enter reference phrases
displayed on a screen of a tablet device using speech input and identify ASR errors with only audio of the ASR
result. ASR errors are found to be missed most frequently when multiple sequential words sounded like another
word or words. The results also show that participants are able to identify less than 50% of ASR errors with
synthesized speech rate 200 words per minute (WPM). The next three studies are conducted with crowdsourced
participants to evaluate the effect of three different manipulations of synthesized speech (i.e., adjusting speech
rate, inserting pauses between words, and repeating the synthesized speech twice) on the accuracy of error
identification. In these three studies, we isolated the speech input and revision process by using the ASR result
from the first controlled-lab study. Participants were asked to identify ASR errors, given the original phrases on a
visual display and the ASR result through audio. The findings showed that slower speech rate (100-200 WPM)
and longer pauses (150ms) between words resulted in higher accuracy of identifying ASR errors, but repeating
synthesized speech twice does not improve the accuracy. Moreover, slower speech rates provided more time
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for users to identify ASR errors. Pauses made words in audio sound more clear because they removed elision,
dropping syllables in words during speech (e.g. "I don’t know" sounds like "I duno").

4.2 Going Deeper into ASR Error Identification across Sighted and Blind Users

My research further investigates the experience of using speech input and the accuracy of identifying ASR errors
with blind participants. A user study with semi-structured interview and tasks of entering text using speech input
is conducted with sighted and blind participants. The results of semi-structured interview show both similarities
and differences in experience with speech input between these two user groups. For example, blind participants
used speech input more frequently and were more concerned about ASR errors than sighted participants. Though
participants in both groups reported during the interview that identifying ASR errors is not a challenging task,
results show that they only identified about 40% of the errors with the default speech rate of 175 WPM. No
significant difference was found across the two groups, indicating that the ability of identifying ASR errors
in audio-only interactions might not improve significantly with experience with speech synthesis. Given that
identifying ASR errors is still challenging for blind users who had more experience with synthesized speech than
sighted users, further research on method of presenting ASR results to users needs to be conducted. A potential
solution could be predicting the words that are likely to be missed by users using machine learning so that such
words are highlighted to allow users to pay more attention to them.

5 PROPOSED WORK: ERROR-INTERACTION IN TEACHABLE OBJECT RECOGNIZERS (PART II)

Part II addresses challenges in reducing recognition errors when training object recognizer through two studies.

5.1 Characterizing Challenges in Machine Teaching by Non-Experts

Object recognizers trained on images of objects taken by users who have little or no knowledge of ML may have
performance degradation due to the misperception of what it means to provide training examples. In this first
real world study, crowdsourced sighted participants are asked to take images of objects for training remotely a
personalized object recognizer. Crowdsourcing is used to collect a dataset of object images that are used to train
and test in real time a convolutional neural network. Images will be analyzed qualitatively and quantitatively
to uncover user strategies for machine teaching with little examples. For example, qualitative measures will
include the image quality, variation in viewpoints and discriminative visual characteristics included in the
multiple training examples, as well as changes in training strategy after testing. On the other hand quantitative
measures will be based on recognition accuracies across objects, varying number of examples, and users. The data,
insights, and findings from this study will be used to guide the design and implementation of novel interactions
to support better machine teaching strategies that will be evaluated in the next study. Currently, I'm working
on implementing a web application that will allow the crowd to train and test a personal object recognizer in
their real world environment. The models for the personalized object recognizers will be trained remotely on our
servers given users training images by employing transfer learning on Google’s Inception-v3 model [29].

5.2 Exploring Interactions for Machine Teaching across Sighted and Blind Users

Prior work in teachable object recognizers [20] showed that the absence of object in an image was one of the
main reasons of performance degradation. It indicates that beyond potential misperceptions in machine teaching,
performance degradation could be caused from the difficulty of framing the object in the camera scope during
training. In the next study, different approaches in automatically inferring and communicating potential errors to
guide the users during photo-taking will be evaluated. The teachable object recognizer will be implemented as a
mobile app with the training and testing running on a server with GPUs to support real time feedback to the user.
Guidance on good versus bad training examples will be communicated through novel interactions informed by



our previous study. Both the application and the interactions will be evaluated through a user study conducted
with two user groups: blind and sighted participants serving as control. In a between subject design we will
explore the effect of automatic guidance in taking good training photos beyond just the built-in instructions on
how to train the object recognizer. Interactive feedback will be evaluated subjectively through an interview after
task performance and quantitatively based on the performance of object recognizers. While prior work explored
teachable object recognizers in a Wizard of Oz study [20], this study requires a working application. I have
developed a working prototype of the teachable object recognizer as an i0S app, where the training happens in a
remote server using transfer learning [4]. Specifically, the last layers of Google’s Inception v3 [29], pre-trained
on ImageNet [10], are fine-tuned with classes and training examples provided by the user.

6 CONTRIBUTION

My research focus is accessible human-error interactions in Al applications for the blind; specifically in the
context of text input through ASR and object recognition through computer vision. While both ASR and object
recognition systems can benefit blind people, the need for visual inspection of their errors has hold back their
usability for this population. In this context, my work focuses on a) quantifying the challenge of identifying
and reviewing ASR errors through audio-only interactions for both sighted and blind users, and b) exploring
accessible interactions that help non-experts and blind users provide good training examples for teachable object
recognizers. I believe that the methods and techniques employed in this work are applicable to other domains
within and beyond accessibility where errors from intelligent systems can be impacted by the user interaction
with teachable interfaces or they be visually inspected only. Thus, to allow for more generalizable findings, my
research questions are explored both with sighted and blind participants.
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