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Abstract. The smart wristband is a novel type of wearable input device for 
smart glasses, and it can control multi-dimensional contents by using touch and 
motion. The smart wristband uses a touch-and-motion–tracking system with a 
touch screen panel (TSP) and inertial measurement unit (IMU) to help users 
control the smart glasses’ interface accurately and quickly without environmen-
tal noise, distortion, and multi-leveled pattern recognition tasks.  

This paper presents the availability and usability of the smart glasses; how 
exactly and quickly users can manipulate the smart glasses’ multi-dimensional 
contents and augmented reality (AR) system by selecting, moving, and chang-
ing contents via touching and dragging a finger and rotating the wrist; the  
device’s point-and-click capacity; and its navigation, program switchover, 
zoom in and out, undo and redo for interactions, and 3D virtual object manipu-
lation aspects for application. 
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1 Introduction 

The use of interactive 3D environments has increased the demand for ubiquitous 
technologies [1]. The continuous research on ubiquitous environments demands the 
development of wearable computers to control the system. Although various ap-
proaches were investigated to overcome the limitations of interaction between hu-
mans and wearable computers, products have had difficulty maintaining a foothold in 
the smart device market, and research has been limited due to the absence of a fast 
and accurately responsive system. 

A see-through head-mounted display (HMD) can provide a transparent display area 
within a user's field of view, enabling a user to view both physical objects in the user's 
surroundings and visual elements on the display. In some situations, however, such as 
when the user is navigating a busy environment, displayed visual elements can be 
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distracting and/or may impair the user from viewing physical objects in his or her 
surroundings [2]. Though a head-mounted display has a highly responsive output 
system, there is no stable input device that understands a user’s command quickly and 
accurately without distraction or that enables multi-dimensional manipulation to  
interact with the 3D environment of the real world or virtual world.  

The new input device in this project, a wristband-type motion-aware touch panel, is 
designed to resolve these problems, allowing for stability of input and a greater de-
gree of freedom. In order to utilize a familiar input device, we chose a touch panel 
that has been popular since smartphones as a main input channel began to dominate 
the market for mobile devices. Obviously, using a touch panel for pointing is a more 
stable input method than using hand gestures or voice recognition because it is less 
influenced by the surrounding environment. Another problem of limited DOF can be 
mitigated by this device because it provides a higher degree of freedom by utilizing 
the rotation of users’ wrists. The additional DOF can be efficiently used to deal with 
various GUIs available through the HMD.  

The finger and wrist have an advantage as the position for the wearable device be-
cause these are the most familiar parts of body for manipulating devices, and they 
have the greatest range of space to control. A large portion of the population already 
uses their fingers and wrists to manipulate devices, manipulating devices that range 
from drills to computers. Since using the suggested motion-aware touch panel utilizes 
this familiar interaction, a motion sensor, and a touch pad with a cursor, users will not 
be confused and find the use of this device unappealing. Also, a wristband-type de-
vice is less likely to make people irritated, since the wearing sensation is similar to a 
watch, and they will find the device less likely to misplace compared to a wallet or a 
phone. The wrist is a very attractive body part for this device because it is connected 
to the finger, which is the most delicate part of the human body, and also to the shoul-
der and elbow, which have the largest range of motion among the body parts. The 
shoulder and elbow increase the wrist’s position freely and widely. Although the 
wristband form factor requires a relatively small screen size, people can use the  
intuitive and delicate device without complicated procedures. 

This paper presents a wristband-type 3D input system called smart wristband, 
which applies users’ commands exactly by implementing the concepts above. 

2 Prior Work 

Smart devices have advanced rapidly. From the introduction of the first smart phone, 
“Simon,” to the commercialization of the first wearable HMD took only twenty years. 
HMDs are simply reinvented wearable computing for a new era; many researchers are 
conducting research focused on HMD and related applications. HMD is a display 
device worn on the head or as part of a helmet. A typical HMD has either one or two  
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small displays with lenses and semi-transparent mirrors embedded in a helmet, eye-
glasses, or visor [3]. To widen the range of applications of HMD, including operation  
in cluttered environments and human-computer interaction on-the-move, a variety of 
input systems for HMD have been invented; however, due to limited input systems, 
these devices are not yet a perfect tool for human-computer interaction or wearable 
computing.  

One of the input systems for HMD, speech recognition that enables human interac-
tion with computers through a voice/speech platform in order to initiate an embedded 
service or process has been advanced. Apple’s Siri and Google’s Voice Search can 
find directions and set important reminders. Moreover, research on gesture recogni-
tion, which recognizes and identifies sign language by using cameras and computer-
vision algorithms, allowing humans to communicate with a computer by hand-
tracking and hand-posture recognition [4], has been conducted at research fields 
through computer vision and image processing. Speech- and gesture-activated control 
offer limited accuracy that varies from user to user and depends on ambient noise 
levels. Speech and image input also raise user-privacy concerns when used in public 
spaces and speed concerns for multi-processing tasks [5]. Even though hand-held 
point-and-click controllers or one-handed keyboards like the Twiddler [6] are a more 
stable input method, their degree of freedom is limited because of physical  
constraints. 

Recently, as interest in wearable computers has increased, the method to utilize a 
wearable input device in the mobile environment has also investigated. Thomas et al. 
endeavored to discover what part of the body is the most appropriate position if a TSP 
can be attached to the body [7]. In this study, they showed that the thigh is the position 
where a TSP made the best performance among the body parts. However, a thigh is hard 
to utilize in the mobile environment because it is not easy to be reached by the hands. 
The wrist, by contrast, is reached easily by the hand even while a user is running. More-
over, using a TSP attached to the wrist showed similar performance to that of a thigh. 
Therefore, we could conclude that the wrist is a proper position for a wearable TSP. The 
wrist is a very attractive body-part that is connected to the finger, which is the most 
delicate part on the human body. The degree of freedom of the wrist is six, which means 
users can manipulate six directions intuitively, and this range of motion is the highest 
among the body parts. When the anatomical position is considered as 0°, around our 
wrist there are two major exceptions: (1) shoulder rotation—arm abducted to 90°, elbow 
flexed to 90°, with the position of the forearm reflecting the midpoint 0° between inter-
nal and external rotation of the shoulder; and (2) supination and pronation—the arm 
next to the body, elbow flexed to 90°, and the forearm in mid-position 0° between supi-
nation and pronation [8]. The shoulder and elbow increase the range of the wrist’s mo-
tion, which indicates that a wrist has a wide range of input variables such as position, 
speed, and acceleration, even while the user is on the move. 



112 J. Ham et al. 

 

3 Implementation
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reduced size. Contrary to this, a counterclockwise rotation with finger touch results in 
zooming out quickly. To adjust the percentage of zoom setting, a user controls the 
degree of rotation of the wrist. 

Quick Wrist Rotate with Finger Touch – Undo and Redo. When a quick wrist 
rotation and finger touch occur at once, undo and redo tasks are performed. While 
touching the finger on the TSP, a quick rotation of the wrist counterclockwise undoes 
the last action or actions that the user made. In addition, when a user quickly rotates 
his or her wrist clockwise with a finger touch on the TSP, the system redoes the last 
action or actions that the user made. To undo/redo several actions at the same time, 
the user would repeat the quick rotation several times. 

4 Results 

To emphasize the usability of the interface and interaction, we developed an applica-
tion—3D virtual object manipulation. A 3D-augmented reality (AR) environment was 
constructed by Qualcomm Vuforia SDK [13]. For selection, a user can click on the 
3D object and then use drag-and-drop for translation of the object by using the TSP. 
When the user wants to rotate the 3D virtual object, he or she can rotate the wrist, 
making the 3D object rotate according to the wrist rotation. As a test, we created a 
target picture paper augmented on a table, and then had a user attempt to fit the target 
with randomly distributed 3D virtual objects. As the demo shows, the user seemed 
confident in using the device and correctly matched the objects to the pictures. This 
application suggests that the smart wristband is a 3D input device that can control a 
3D virtual environment. Moreover, by combination of TSP and IMU, people can con-
trol the devices in more than three dimensions; for example, by moving the wrist and 
touching on the screen at once, people can control other functions at once, such as 
depth, time, and so on. This multi-dimensional control presents development possibil-
ities as a 3D-drawing tool.  

To confirm usability, we conducted several experiments to analyze how fast and 
accurately users can react with this input device. We hired three subjects from our 
university (two males and one female, with an average age of 27). The goal of this 
experiment was to estimate the precision and task-completion time of using the wrist-
band-type TSP, depending on the degree of freedom given to be controlled by wrist 
rotation. The task was for the subjects to rotate their wrists to the given angles of yaw, 
pitch, and roll; to help the participants understand the target position and actual posi-
tion of their wrists, a physical target and a physical object rotated by the given yaw, 
pitch, and roll angles were displayed. When participants believed their wrist positions 
corresponded to the given angles, they were required to click the screen by tapping 
the TSP on their wrists. Through the experiment, we were able analyze the behavior 
of users with regard to how fast and accurately users can utilize our device.  
We estimated the time and error to complete each trial. The result shows that task 
completion time increases as the number of DOF increases, as shown in Figure 3d. 
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Fig. 7. Precision and task completion time in each dimension of (a) 1 DOF, (b) 2 DOF, and (c) 
3 DOF, as well as (d) overall task completion time and error for each DOF 

5 Conclusion 

In this research, to improve the low degree of freedom and the instability of wearable 
input devices, we presented a new input device with the ability to select and command 
correctly, directly, and easily through the use of tactile and wrist motion: a wristband-
type motion-aware touch panel. It was demonstrated that users were able to effective-
ly use the wearable 3D input device for HMD-display object selection and control it 
by using tactile input via a finger to select the correct object and by using gestures and 
wrist rotation to control the screen or point at objects. In addition, five kinds of inte-
ractions—tools and commands—have been implemented, and one application—
results—has been realized; these were point and click, navigation, program switch-
over, zoom in and out, undo and redo for the interactions and 3D virtual-object  
manipulation for the application. 

We humans have a lifetime of experience in perceiving our environments and inte-
racting with physical objects with our fingers and wrists. As a higher level of technol-
ogies has been continuously developed, our human requirements have grown excee-
dingly challenging and include high spatial accuracy and resolution, low latency, and 
high update rates. Therefore, this 3D-input device would satisfy our desires for an 
intuitive and simple but delicate interaction by using cursor movement (TSP) and a 
hand-gesture awareness system (IMU). 
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