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ABSTRACT 

Teachable interfaces can enable end-users to personalize machine learning applications by explicitly 
providing a few training examples. They promise higher robustness in the real world by significantly 
constraining conditions of the learning task to a specific user and their environment. While facilitating 
user control, their efectiveness can be hindered by lack of expertise or misconceptions. Through a 
mobile teachable testbed in Amazon Mechanical Turk, we explore how non-experts conceptualize, 
experience, and reflect on their engagement with machine teaching in the context of object recognition. 
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Table 1: Characteristics of user studies 
and systems of prior work on behav-
ioral studies and machine learning. 

User Study System 
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Thomz et al. [21] 14 • • 
Jain et al. [11] N/A • • 
Yang et al. [23] 14 • • 
Guo et al. [8] 17 • • 
Our approach 100 • • • 
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INTRODUCTION 

As the presence of machine learning and artificial intelligence increases in people’s daily lives, so do 
eforts to beter capture, understand, and imagine this coexistence. It is especially the case for systems 
that incorporate teachable interfaces (e.g., [5, 7, 12, 14]), where end-users are called to consciously 
provide training examples and actively interact with the machine learning algorithm to increase its 
accuracy. By significantly constraining the conditions of the machine learning task to a specific user 
and their environment, these systems promise higher robustness in real world scenarios. However, they 
are also susceptible to the way that non-experts perceive machine teaching and their misconceptions. 
With an intertwined goal of improving user experience while making learning more efective, 

teachable interfaces are fueled both by advances in machine learning (e.g., transfer learning [18]) 
as well as human-computer interaction studies providing deeper insights into the users and their 
interactions [1]. This work contributes to the later by exploring non-experts perception of machine 
teaching in the context of teachable object recognizers (TORs) [13, 15] with Amazon Mechanical Turk, 
a popular platform for studying user behavior at scale [3, 16], allowing us to recruit a large sample 
(N = 100) and collect data in realistic contexts using a performance-based payment scheme [10]. 

Participants in our study were asked to train and test an object recognizer using their mobile devices. 
We analyzed participants’ photos qualitatively by identifying common paterns in their machine 
teaching strategies as well as quantitatively by reporting the performance of their recognition models. 

RELATED WORK 

Our study draws from prior work looking at how user interactions with an interactive machine 
learning system afect system performance, with a few representative papers in Table 1. While there 
is a rich HCI literature on crowdsourcing user perception (e.g., graphical perception [9]) and user 
interactions with machine learning systems (surveyed in [22]), to our knowledge, this is the first study 
on crowdsourcing the perception of machine teaching in the context of teachable interfaces. 

Thomaz et al. [21] characterized people’s behavior of teaching robot actions by demonstration, and 
Yang et al. [23] conducted user studies on the perception of machine teaching for non-expert users in 
the context of general machine teaching. Those studies, however, include a relatively small participant 
pool compared to behavioral studies using crowdsourcing. Many studies have focused on building 
systems that combine data from a crowd to improve machine learning models in applications such as 
environmental sensing [8], identifying recidivism [20], and correcting traversing robots [11]. However, 
their goal is diferent from that of exploring machine teaching behaviors. 
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Figure 1: Interface for data collection. 

Table 2: Variations across participants. 

Code Pre-test Training Post-test 

Zoom in/out 49 65 57 

Background 20 39 21 

Side 11 36 29 
Perspective 24 53 32 
Position 6 39 17 

Lightexposure 4 4 0 
Light source 5 16 6 

USER STUDY 

We built a mobile web application that embeds the questionnaires and the testbed for collecting photos 
(shown in Fig. 1). The application communicates with a GPU server, where a TOR per participant is 
created and tested on the fly with the participant’s photos. Similar to Kacorri et al. [13], each TOR 
model was built using transfer learning based on Google Inception (V3) [19]. 

Participants 
We recruited 100 participants from Amazon Mechanical Turk over an 11-day period. Their ages ranged 
20-60 (M=32.6, SD=8.3); with 50 female, 49 male, and 1 non-binary participants. All participants 
reported having experience taking photos with their devices. When asked about their familiarity with 
machine learning, only few participants reported never having heard of it (N = 7) or having extensive 
knowledge on machine learning (N = 1). The majority reported having heard of it but not knowing 
what it does (N = 46) or having a broad understanding of what the machine learning is (N = 46). 

Procedure 

Afer providing demographic and technology experience information, participants selected a category 
of objects from five categories (Fig. 1a): botle, cereal, drink, snack, and spice. They chose three objects 
belonging to their specific category and entered their names (Fig. 1b). The TOR module, with three 
stages (pre-test, training, and post-test), began once participants had identified the objects of choice in 
their environment. In pre-test (Fig. 1c), the TOR module randomly chose one of their objects, asked 
the participants to take a photo of it, and used the photo to test a generic model. The recognition 
result was then shown within two seconds (Fig. 1d). This process was repeated fifeen times (5 photos 
per object). The generic model was pre-trained on ImageNet [4] and then fine-tuned to objects in the 
GTEA dataset [6]. Since this model was not trained on participants’ personal objects, almost all the 
predictions were wrong in this stage, which aimed to familiarize with the object recognition task. 
During training, the module randomly selected one of the objects, and asked participants to take 

30 photos of that object consecutively to train their own TOR; i.e. a total of 90 photos (30 photos per 
object). Participants were specifically asked to train their TOR to be robust so that it learns to identify 
objects anywhere, anytime, for anyone. The module trained the TOR with photos from the participants. 
Participants were instructed that they would be given a bonus ($2) if their model passed a secret 

robustness test, a performance-based payment method based on Ho et al. [10]. Afer training, we asked 
participants to report their confidence in the robustness of their models and factors they perceived as 
important in training the TOR. Participants were then asked to select a subset of 20, 5, and 1 photo(s) 
that would make their model faster and more accurate. Last, in the post-test, participants performed 
the same procedure as in the pre-test with predictions coming from their newly trained TOR. 
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(a) Varying the distance between the camera 
and object (P1, P7). 

(b) Varying the background (P7, P9). 

(c) Varying the sides of objects (P4, P12). 

(d) Varying the angles of camera and object 
(P8, P24). 

(e) Varying the position of objects in photos 
(P26, P31). 

(f) Varying illumination with diferent de-
grees of light exposure (P14, P65). 

(g) Varying illumination with diferent 
sources of light (P25, P33). 

Figure 2: Variation examples. 

PATTERNS IN MACHINE TEACHING STRATEGIES AND MODEL PERFORMANCE 

Two researchers examined the behavioral paterns within participants’ photos with a thematic coding 
approach [2]. The researchers created initial codebooks independently and later resolved disagree-
ments in their codebooks to generate the final codebook for inter-rater validation. The photos in 
diferent steps (pre-test, training, and post-test) were coded, separately. There is a substantial agreement 
between the coding data from the two researchers (Cohen’s Kappa = 0.80). 

Codebook 

Our coding scheme is based on four dimensions that humans generalize across for visual recogni-
tion [17]: size, location, viewpoint, and illumination. Specifically, we focus on presence/absence of 
variation across factors within these dimensions for at least one of the objects. 

Size (zoom in/out). We have four levels (0–0.25, 0.25–0.5, 0.5–1.0, higher than 1.0) for the ratio of the 
height of an object to the height of a photo. When there was more than one ratio level in photos of 
an object, we assumed that the participant varied the size factor. 

Location (background). Variation in location was marked if a participant took photos of an object in 
diferent places as indicated by the background. Slight changes of background due to variation in 
viewpoint were not considered as variation in location/background. 

Viewpoint (side, perspective, position). Viewpoint is captured by the side, angle, and position of the 
object relative to the camera. For example photos may include variation on object side if both front 
and back of the object is present; perspective if the angle between and camera and the object changes 
significantly; and position if the object is centered in some of the frames but not on others. 

Illumination (light exposure, light source). This included variations in brightness due to change in light 
exposure (e.g., in the amount of ambient light while the object remains at the same location) or due 
to change in light source (e.g., use of flash light or another location). 

Results 
More than half of the participants took photos with variations in the size and viewpoint for at least 
one object when training their models (Table 2, Fig. 3). We found that participants tent to vary most 
the distance (Fig. 2a) and the angle (Fig. 2d) of the object from the camera. Fewer than 10 participants 
varied the light exposure on their training examples (Fig. 2f), which was the least common type of 
variation during training. While non experts, participants seem to understand the importance of 
variation in their training examples for robustness, with 77% of them including at least one type of 
variation. However, only 11% of them generalized across all four dimensions. 
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Figure 3: Number of participants whose 
images varied in at least one code per fac-
tor. 

Figure 4: Number of participants whose 
images had inconsistencies in their varia-
tions for at least one code per factor. 

Figure 5: Precision, recall, and F-score of 
the TORs trained with photos from the 
Training (N = 100) 

. 

Even within the same dimension, variation is present across diferent factors; e.g., in viewpoint, far 
fewer participants varied the side (Fig. 2c) and position (Fig. 2e) than perspective (Fig. 2d). 
We observed that variations were not consistent across all objects in training for some of the 

participants, as shown in Fig. 4. Afer training, the majority of participants were uncertain (N = 52) 
or very uncertain (N = 10) about the robustness of their models. Though, a large portion stated as 
being certain (N = 30) or very certain (N = 8). When calculating precision, recall, and F-score of their 
models on their post-test images we found that on average they were 0.82, 0.79, and 0.83, respectively 
(Fig. 5). We did not observe a relationship between the performance of their models and participants 
reported expertise with machine learning or certainty in robustness of their models. 

DISCUSSION 

This work presents preliminary results from our analysis of non-experts perception of machine 
teaching in the context of teachable object recognizers. Our qualitative analysis of the collected 
training photos shows that more than half of the participants included some variation (in terms of 
object size, location, or viewpoint) in their training examples for their model to be robust. However, this 
ofen did not include variation in illumination (about 10%). Moreover, some of the participants (about 
35%) incorporated diferent factors in variation across the three objects in the training stage. Models 
trained by the participants achieved a 83% accuracy on average. We did not observe a relationship 
between the model performance and the participants reported experience with machine learning. 

We are currently investigating how participants alter their training if they are given a second chance 
to train their models. Also, we will look into any associations between model performance, partici-
pants’ background (e.g. technology experience), and training strategies. We will explore clustering 
approaches for uncovering common behavioral paterns in an atempt to capture how non-experts 
may conceptualize robustness in machine teaching for object recognition. We will contextualize our 
quantitative results with qualitative analysis of participants text responses, feedback, and comments. 
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