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ABSTRACT 
Teachable interfaces can empower end-users to attune ma-
chine learning systems to their idiosyncratic characteristics 
and environment by explicitly providing pertinent training 
examples. While facilitating control, their effectiveness can 
be hindered by the lack of expertise or misconceptions. We 
investigate how users may conceptualize, experience, and re-
flect on their engagement in machine teaching by deploying a 
mobile teachable testbed in Amazon Mechanical Turk. Using 
a performance-based payment scheme, Mechanical Turkers 
(N = 100) are called to train, test, and re-train a robust recog-
nition model in real-time with a few snapshots taken in their 
environment. We find that participants incorporate diversity 
in their examples drawing from parallels to how humans rec-
ognize objects independent of size, viewpoint, location, and 
illumination. Many of their misconceptions relate to con-
sistency and model capabilities for reasoning. With limited 
variation and edge cases in testing, the majority of them do 
not change strategies on a second training attempt. 
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INTRODUCTION 
As machine learning and artificial intelligence become more 
present in everyday applications, so do efforts to better cap-
ture, understand, and imagine this coexistence. Experts from 
diverse disciplines are working together and critically exam-
ining the impact of algorithmic decisions, their assumptions, 
and their biases [5, 7, 9, 14, 36]. Error-prone, computationally 
complex, and failing in ways unexpected by humans, such 
algorithms called early on for transparency, interpretability, 
accountability, and control [54, 56, 50, 18, 61]. More recently, 
these efforts have redoubled (surveyed in [1, 62]), fueled by 
funding and legal initiatives such as the DARPA Explainable 
Artificial Intelligence [24] and the European Union’s General 
Data Protection Regulation [15], while feeding into future 
initiatives such as the Algorithmic Accountability Act [16]. 
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Figure 1: Given an object category, MTurkers are called to 
choose three object instances and train a robust personal ob-
ject recognizer using their mobile camera. Here we include 
examples from some of the participants’ selected objects. 

Machine teaching [51, 64] lies at the core of these efforts 
as it enables end-users and domain experts with no machine 
learning expertise to innovate and build AI-infused1 systems. 
Beyond helping to democratize machine learning, it offers an 
opportunity for a deeper understanding of how people perceive 
and interact with such systems to inform the design of future 
interfaces and algorithms [3] – a perspective this paper shares. 

Within this paradigm, teachable interfaces [48, 37] explore 
applications where users can explicitly train a model with 
their generated data and labels. While facilitating user control, 
the effectiveness of these applications can be hindered by the 
lack of expertise or misconceptions about machine learning. 
Though personalization is often the ultimate goal (e.g., [34]), 
the interactive nature of these interfaces can help users in 
return to uncover basic machine learning concepts (e.g., [27]). 

In this paper, we examine how people conceptualize, experi-
ence and reflect on their engagement with machine teaching 
in the context of a supervised image classification task, a task 
where humans are extremely good compared to machines, 
especially when they possess prior knowledge of the image 
classes. Using a teachable interface for object recognition, we 
recruit participants (N = 100) through Amazon Mechanical 
Turk2 to choose three objects in their environment and train 
a model to distinguish between them in real-time using the 
camera on their mobile phones, as shown in Figure 1. 

1A term in Amershi et al., 2019 [4] for “systems that have features 
harnessing AI capabilities that are directly exposed to the end user.” 
2https://www.mturk.com/ 
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Why crowdsourcing. Beyond being utilized as a platform Table 1: Related studies’ characteristics juxtaposed with ours. 
for obtaining labeled data quickly at low cost, crowdsourc-
ing is also employed for behavioral and perception studies [22] [30] [10] [34] [27] [65] This study 

interactions with machine learning systems, surveyed in [59]. 
Allowing us to quickly recruit a large participant pool for this 
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study, it also enables data collection outside a laboratory to ob-
tain high variability and real-world illumination, backgrounds, 
and camera manipulations in the user’s environment. 
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We build a web-based testbed for a mobile teachable object 
recognizer and ask participants to train and evaluate it on three 
objects of choice within an object category (Figure 1). Cate-
gories represent daily objects that span different characteristics 
such as size, shape, color, material, and function. Through 
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(e.g., [26, 12, 52]) including those for understanding people’s 
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sa performance-based payment scheme [28], participants are 
called to iterate and reflect over their efforts with the goal of 

Accuracy 
Behavior • • • • • • 
Feedback • • • • • • 

making their recognition models more robust. Serving as an 
oracle, they are tasked with delivering a teaching set to the 
recognition model to help it learn the classification task. 

We conduct a contextualized quantitative analysis on the par-
ticipants photos, their written responses, as well as their model 
performance. We find that diversity, important in machine 
learning, is deemed important by a majority of participants 
and incorporated in teaching strategies, drawing from parallels 
to how humans generalize across object size, viewpoint, lo-
cation, and illumination [45]. Many misconceptions relate to 
consistency; few think that it is good to be consistent and teach 
with almost identical examples; others failed to be consistent 
on incorporating diversity across classes. While participants 
have good intuition on importance of discriminatory features 
in teaching but on evaluating their models, we observe suscep-
tibility to missing edge cases. Last, we see that the majority of 
participants do not change strategies on a second attempt even 
though possess a reasonable intuition on what would be im-
portant. We see how our findings and insights can help better 
understand non-experts’ interactions with machine teaching 
and guide the design of future teachable interfaces that can 
anticipate users misconceptions and assumptions. 

RELATED WORK 
We discuss prior work on machine teaching with a focus on 
teachable interfaces that most relate to our study. Prior work on 
behavioral studies using crowdsourcing is briefly mentioned 
to highlight elements that we draw from. 

Machine Teaching 
Machine teaching involves a teacher who knows the decision 
boundaries and designs an optimal training set for one or 
more students [64]. In this paper, the teacher is a human and 
the student is a classification model who is being trained to 
classify images of objects, as shown in Figure 2, though the 
inverse – machines teaching humans to classify images – is 
also an active area of research [31]. There is a rich literature 
on sequential machine teaching with humans as the teacher, 
e.g., programming by demonstration for teaching robots to 
manipulate objects [58, 19]. However, in this review we focus 
on prior work that utilizes batch teaching, where examples are 
given as a set and their order does not matter. 

Batch teaching is a very common paradigm for many real-
world AI-infused systems, e.g., using face recognition, fraud 
detection and speech recognition. This is typically done by 
experts in the field and end-users are hardly exposed to the un-
derlying mechanisms that could help explain their limitations. 
Teachable interfaces3 that fall under this machine teaching 
paradigm, have the potential to help in this direction as they 
can enable non-experts to uncover basic machine learning 
concepts (e.g., [27]). Moreover, with advances in transfer 
learning [46, 55], they can spur innovation as end-users can 
re-purpose models trained on vast amounts of data for new but 
related tasks, e.g., personalize assistive technologies [32]. 

We look into prior work employing teachable interfaces, a term 
perhaps not originally used by the authors. Here, we focus 
on a subset of interactive machine learning literature, where 
users are called to generate all the training and testing exam-
ples for a personalized model. Table 1 presents representative 
examples of prior studies from 2011-2019 on gesture recog-
nition for musicians [22], sign language [30] and educational 
applications [27], personalized sound detectors for people who 
are deaf/Deaf or hard-of-hearing [10], personal object recog-
nizers for blind people [34], and physical activity classifiers 
for young athletes [65]. In contrast to this work, prior stud-
ies tend to have smaller participant pools and are typically 
conducted in a controlled setting, where the researchers are 
present. Partially this could be due to the user characteristics 
of interest; people with disabilities [10, 34], children [27], and 
students [65]. Another reason could be challenges in remote 
data collection as it would require a working prototype [10, 
34] or specialized devices from the users [27, 65]. Our teach-
able object recognition testbed, utilizing built in camera in a 
mobile phone, and existing crowdsourcing platforms allow us 
to reach a larger participant pool that can be further scaled. 

As shown in Table 1, the input modality for the teaching set 
was more often based on sensing [22, 27, 65] and videos [22, 
30] with one example for sound [10] and photos [34]. For 

3A term coined by Patel and Roy (1998) [48], where “the user is a 
willing participant in the adaptation process and actively provides 
feedback to the machine to guide its learning.” 



the last two, participants could not assess the quality of their 
teaching examples – participants who were deaf/Deaf or hard-
of-hearing could not hear the sounds they recorded [10] and 
blind participants could not see the photos they took [34]. In 
this paper, we choose images as the input modality for the 
teaching set. This allows us to tap into a large user group of 
non-experts that can simply use their mobile phones to take the 
photos in a real-world setting. More so, by choosing an object 
classification task, an accessible task to many where they can 
serve as the oracle, we are given the opportunity to explore 
how humans teach a high-dimensional decision boundary to 
machines by feeding them only with few instances. More 
importantly, this modality allows us to visually inspect the 
teaching set for common patterns in users’ behavior. 

Similar to most of the prior work in Table 1, our analy-
sis is based on observed behaviors and participant feedback. 
Leveraging prior work in neuroscience, we examine how non-
experts’ teaching strategies draw parallels in machine robust-
ness to human robustness, where object recognition involves 
generalization across size, location, viewpoint and illumina-
tion [45]. While prior work did not include such a fine-grained 
analysis of the participants’ input, it provided insights and 
anecdotal evidence that guided the design of our study such as 
the need for iterations [22, 65, 27], which may vary not only 
across participants but also due to the underlying algorithm 
and task [21]. For comparison purposes and time sake, we 
opted to keep the number of iterations constant at two. Similar 
to our study, the number of classes were limited (2-5) with an 
exception of 15 [34], where there were no iterations. 

Crowdsourcing and Online Behavioral Studies 
Despite the potential risks in data validity [47, 42], advantages 
such as subject anonymity, prescreening, diversity, efficiency, 
and low cost have made crowdsourcing platforms attractive for 
user studies both in social [41, 49] and cognitive [53] science 
with a focus on behavioral and perception studies (e.g., [26, 
12, 52]). A building block for the machine learning commu-
nity, crowdsourcing has been utilized to generate data and 
annotations, validate existing systems, incorporate feedback 
from humans, and observe how people interact with machine 
learning models, surveyed in [59]. We build on this prior 
work adopting a performance-based payment scheme [28] to 
incentivize participants while ensuring a rate of $15/hour [25]. 
Perhaps the closest work to our study is that of Yang et al. [63], 
where online interviews with non-experts (N=98) were used 
to elicit how people with no machine learning expertise per-
ceive machine learning processes. While the survey did not 
include hands-on interactions with a teachable interfaces, the 
findings stressed the need for future work on helping people 
build better learning algorithms, further motivating our work. 

TESTBED: TEACHABLE OBJECT RECOGNIZER 
To explore how non-experts conceptualize, experience and 
reflect on their engagement with machine teaching, we build a 
web-based teachable object recognizer for mobile phones. Par-
ticipants can train, test, and re-train it to distinguish between 
three objects of their choice. In this case, a test corresponds 
to a ‘direct’ evaluation [22], where participants take photos of 
their objects in real-time and observe the model’s behavior. To 
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Figure 2: Characterization of our testbed in the machine teach-
ing problem space [64], where T stands for teacher and S for 
student. A human T employs a pool-based, model-free, an-
gelic, empirical teaching. The testbed has a single recognition 
model S learning in batch mode, unaware that is being taught, 
while considering T as a friend (no adversarial examples). 

help us better contextualize our observations, participants also 
provide background information and feedback4. 

Our machine teaching problem. As shown in Figure 2, we 
adopt Zhu et al. [64] machine teaching problem space to char-
acterize the teachable interface in our testbed as a system 
where human is the teacher and machine is the student. The 
teacher provides, in batch mode, a finite pool of examples 
consisting of labeled photos of objects as the teaching signal. 
The teacher takes a model free approach, treating the student 
as a blackbox, though we anticipate that humans may already 
have some assumptions on how the black box works or should 
work. The student, employing a convolutional neural network, 
does not anticipate teaching, i.e., assuming training examples 
are independent and identically distributed and that there are 
no errors. More so, the teacher is considered a friend, i.e., no 
adversarial training. Last, we assume that the teacher uses 
heuristic teaching methods to improve the performance of the 
student, the object recognition model in our case. We aim to 
better understand these heuristic methods, factors they may 
relate to, as well as assumptions that people may have. 

Model. For each user, our testbed creates a new convolutional 
neural network using the Google Inception V3 [57] pre-trained 
on ImageNet [17]. Everytime the user provides a teaching set, 
the last layer of the pre-trained model gets replaced with a new 
softmax layer and re-trained with the user’s images with 500 
steps and a gradient descent learning rate of 10−2. Models are 
trained on our 8 GPU server in real-time asynchronously; the 
app continues to run and ask users for open-ended feedback 
while the training continues in the back. The web interface 
communicates with the server using the Flask API [6]. 

Interface. As shown in Figure 3, initially the testbed asks 
for background information, technology experience, and fa-
miliarity with machine learning. Then, it provides five object 
category options: bottle, cereal, drink, snack, and spice, with 
three sample icons for each category indicative of the preferred 
shape. Categories are inspired by prior work on personal ob-
ject recognizers [34] and are engineered to elicit objects that 

4Questions and prompts can be found in the supplementary material. 



Figure 3: Testbed screenshots: questionnaires, category selec-
tion, object labeling, and camera view in training and testing. 

are present in daily life but differ in size, shape, color, material, 
and function. Participants can choose to train only on one of 
the categories. To avoid object shape or size from being a 
factor in any observed inconsistencies between the classes, 
they are asked to use objects (a total of three) that fall within 
the same category; three, the smallest number for multiclass 
classification and previously used in teachable interfaces for 
non-experts [37], minimizes challenges in finding different 
object instances within a category in a real-world environment 
as well as the task completion time (already 40 mins long). Af-
ter labeling their objects, participants are guided through five 
interactions with the machine learning model (the student)5: 

Preliminary test (TS0): Participants are asked to take photos 
of their objects to see if the existing non-personalized model 
can recognize them. The instruction reads: “Take a photo of 
an object (name at the top) by tapping on the camera screen. 
The existing model will try to predict it.” Given an object label 
displayed at the top, one takes a photo of the corresponding 
object and sees the recognition result (a label displayed for 3 
seconds). This repeats 15 times (5 times per object in a random 
order). As expected, during this interaction recognition results 
will not match participant’s labels as the generic model is 
based on Google’s Inception V3 and is not yet personalized. 
There is a dual motivation behind this interaction. First, it 
helps familiarize with the interface, which simulates the native 
camera app. Second, it helps collect evaluation examples 
unbiased from one’s teaching experience that is to follow. 

Train 1 (TR1): Participants are asked to train the object rec-
ognizer with the following instructions: “Train our object 
recognizer to identify robustly your objects anywhere, anytime, 
for anyone. We will randomly choose one of your objects and 
ask you to take 30 photos of it. You will be paid $2 extra if 
your examples pass our robustness test.” Here, we hint that 
model robustness means to be able to recognize an object 
anywhere, anytime, for anyone. Motivated by Ho et al. [28] 
performance-based payment scheme, we also create the im-
pression of a ‘secret’ test distinguishing examples best for 
5All instructions can be found in the supplementary material. 

robustness, though on our end this is merely a naive quality ex-
amination (e.g., photos of objects in a screen rather than in the 
real-world). As shown in Figure 3, given an object label dis-
played at the top, participants take 30 sequential photos. This 
repeats 3 times (1 time per object in a random order). Thus, 
the first teaching set comprises 90 photos (30 per object). 

Test 1 (TS1): Similar to TS0, participants are asked to “Test 
the trained object recognizer again to see how robust it is.” 
Here, recognition labels match participants’ labels except in 
cases of misclassification, where an object is misrecognized as 
one of the other two. Again, no confidence scores are shown. 

Train 2 (TR2): Participants are given an opportunity to re-train 
their model from scratch with the following instructions: “You 
told us what you would do differently, now show us! On the 
next screen, take 30 more pictures of the requested object. 
You will be paid $3 extra if this training does better than the 
previous one in our robustness test.” 

Test 2 (TS2): As in TS1, users can test the re-trained model. 
The instruction given to the participant was “The object rec-
ognizer is trained again. Test the trained object recognizer.” 

Eliciting Feedback. The testbed includes the following open-
ended questions: “What did you think was important to con-
sider when training the object recognizer?” after TR1; “If 
you were to retrain the system to make it more robust, what 
would you do differently?” after TS1; “How did you position 
the object in the image?”, “How did you decide the distance 
of the camera from the object?”, and “How did you decide 
which side of the object is visible in the image?” at the end. 

CROWDSOURCING STUDY 
We deploy our testbed in Amazon Mechanical Turk (IRB 
#1255427-1) and investigate how non-experts crowdworkers 
teach a machine a high-dimensional decision boundary such as 
a fine-grained image classification with a few examples only. 

Participants 
We recruited 143 participants over 10 days. However, data 
from 43 were excluded from the analysis – 7 helped in piloting, 
1 used the same object for all classes, 3 took photos of objects 
in display screens, 2 took photos with no objects. The other 30 
had technical problems by attempting the task simultaneously 

How would you classify your 
level of familiarity with machine learning?

Use apps that can recognize type of objects, 
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Figure 4: Participants’ technology experience and familiarity 
with machine learning mostly ranging from slightly (have 
heard of it but don’t know what it does) to somewhat familiar 
(I have a broad understanding of what it is and what it does). 



with our system failing to distribute them across the 8 GPUs, 
losing data from 12 and interrupting the task for other 18; all 
were compensated and the bug was fixed. The 100 participants 
who were included in the dataset ranged from 20 to 60 in age 
(µ=32.6, σ=8.3); 49 were male, 50 female, and 1 non-binary 
with 90 reporting being right handed. No one reported a visual 
or motor impairment. As shown in Figure 4, the majority of 
participants are frequent users of mobile devices taking photos 
with them weekly, though many of them don’t use any appli-
cations for recognizing objects, food, or plants. When asked 
about familiarity with machine learning, 6 reported never hav-
ing heard of it, 45 had heard of it but didn’t know what it does, 
48 had a broad understanding of what it is and what it does, 
and only one reported having extensive knowledge. 

Procedure 
With the goal of attracting non-experts in machine learning, 
we opted for a HIT description that minimizes technical terms: 

“You will be asked to take photos of everyday products such 
as soda cans, cereal boxes, and spices to teach your phone 
to automatically recognize them. To see how well the object 
recognition works you will test it by giving a single photo at 
the time.” A warning message was displayed if participants 
attempted to start the study from a device other than a mobile 
phone. Only one participation was allowed. 

Through piloting, we estimated that a study session could be 
successfully completed within 30-40 minutes. Adopting a 
$15/hour compensation rate [25] all participants received a 
total of $10 once all the data collection was completed. To 
incentivize participants, we used a performance-based pay-
ment scheme [28], where this amount was split as $5 flat 
participation, $2 bonus for passing “our robustness test” in 
the first attempt to train, and $3 bonus for achieving a better 
performance in “our robustness test” the second time around. 
Given that objects differ across participants it was not possible 
to have an ideal ‘secret robustness test’; bonus was decided 
merely on a quality check. While the testbed’s connection is 
persistent and one could do other tasks in between, we observe 
that participants took on average 35.57 minutes (14.21-79.86, 
σ=12.85) to complete the study, very close to our estimates. 

ANALYSIS OF BEHAVIOR 
We explore how participants conceptualize, experience and 
reflect on their engagement with machine teaching by looking 
at the photos they took for the teaching and testing sets as 
well as changes in their behavior when repeating the process. 
Observations are contextualized with participants’ responses. 

Visual Attributes in Photos. We collected a total of 22,500 
photos from 100 participants across all training and testing 
interactions. To uncover patterns in participants’ teaching 
strategies, photos were coded using thematic coding [11]. Two 
researchers independently created initial codebooks of visual 
attributes in photos across four dimensions, i.e., size, location, 
viewpoint, and illumination; prior work on visual object un-
derstanding [45] indicates that our ability to recognize objects 
generalizes across these dimensions. We want to see how par-
ticipants draw parallels from their understanding of robustness 
in these dimensions to enable machines to do the same. 

Figure 5: Examples of variation attributes in teaching sets. 

Figure 6: Sample photos considered by the count attributes. 

Researchers discussed disagreements to produce a final code-
book, shown in Tables 2–4 with examples in Figures 5 and 6. 
There are two types of attributes: binary and count. Binary at-
tributes capture presence of variation or inconsistency within a 
teaching or testing set of photos. If a participant varied photos 
for an object along an attribute such as distance (VSizeDist) or 
background (VLocBg), the corresponding attribute is 1; oth-
erwise 0. Similarly, variation inconsistency across the three 
objects is captured through binary attributes, named ISize, ILoc, 
IView, IIllum. Count attributes indicate the number of photos 
within a set with a certain characteristic such as presence of 
participant’s hand (CHands) and use of flashlight (CFlash) or a 
quality issue such as dark (QDim) and blurry (QBlurry) photos. 
There was substantial agreement (Cohen’s kappa=0.80). 

Subjective Feedback. Participants’ responses to the open-
ended questions were also analyzed with a thematic coding ap-

https://kappa=0.80
https://14.21-79.86


Table 2: Variation attributes, true if a variation is present for at least one object. 

Variation Definition 
VSizeDist True if camera distance, ratio of object height to frame, differs for two or more photos using [0, 0.25), [0.25, 0.5), [0.5, 1.0), and [1.0, ∞) bins. 
VLocBg True if the background differs for two or more photos, i.e., different locations or perspectives of a space. 
VViewSide 
VViewAngle 
VViewPos 

True if the side of objects differs for two or more photos. 
True if the angle between the camera and the object with the same side of object differs for two or more photos. 
True if the position of the object in the camera frame, center, top left, top right, bottom left, or bottom right, differs for two or more photos. 

VIllumExp 
VIllumSrc 

True if the exposure to light differs for two or more photos taken at the same location. 
True if the source of light differs for two or more photos because they were taken at different locations. 

Table 3: Inconsistency attributes, true if there is an inconsistency in variation across the three objects. 

Count Definition 
ISize True if the camera distance varies in the photos for one or two objects but not all three. 
ILoc True if the background varies in the photos for one or two objects but not all three. 
IView True if size, angle, or position capturing viewpoint varies in the training photos for one or two objects but not all three. 
IIllum True if light exposure or source capturing illumination varies in the training photos for one or two objects but not all three. 

Table 4: Count attributes, number of photos with a given characteristic including those looking at quality issues. 

Count Definition 
CCrop Number of photos where the object is cropped, i.e., object is close to the camera, out of frame, or obscured by another object. 
CReshape Number of photos where the object was reshaped (e.g., opening a lid of a package). 
CContents Number of photos where the contents inside a package was taken out of the container or the inside of the package is visible. 
CNoBg Number of photos where were the background is not visible because the photos are filled with the object completely. 
CPlainBg Number of photos where the background includes two or fewer colors with no or very simple textures. 
CClutBg Number of photos where the background is cluttered with objects other than the object of interest. 
CTextBg Number of photos where the background includes a wall, floor, or furniture with texture. 
CHands Number of photos where the participant’s hand(s) is visible in the photo. 
CLogo Number of photos where the side with the logo (or label) of the object was visible in the photos. 
CFlash Number of photos where the brightness varies in different parts of the photo like using flashlight. 
QSmall Number of photos where the object is too small (height of the object < 25% of the height of the photo). 
QDim Number of photos where the brightness of the photo is too dark to recognize texture or edge of the object. 
QBlurry Number of photos where the object of interest is blurry. 
QIrrelevant Number of photos where the photo includes only irrelevant objects without the object of interest. 
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Figure 7: Number of participants per variation and inconsistency attribute across all five interactions with the model: preliminary 
test (TS0), train 1 (TR1), test 1(TS1), train 2 (TR2) and test 2 (TS2). The graphs on the left indicate how participants incorporate 
diversity in their photos in terms of object size, viewpoint, location, and illumination when they train and debug their models. 
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Figure 8: Percentage of photos per participant given a count attribute, with standard error as error bars. Participants took photos 
mostly with the logo on it and many of them against a textured or cluttered background. Often the objects were cropped in the 
camera frame and sometimes participants’ hands were included in the photos. Surprisingly, few participants opened the object and 
trained the model on their content as well. The most common quality issues were blurry and dim photos though not that prevalent. 



proach [11]. The same two researchers who coded the photos, 
created initial codebooks and merged them through discus-
sions resolving disagreements. Responses were coded inde-
pendently with a substantial agreement (Cohen’s kappa=0.73). 

Results 
What Are Non-experts’ Teaching and Debugging Strategies? 
We explore how variation6, inconsistency, and other attributes 
manifest on participants’ image sets when they are first called 
to train the object recognizer on objects of their choice. 

Incorporating diversity in teaching. Diversity plays an im-
portant role in machine learning [23]. When incorporated in 
the teaching set, it ensures that examples can provide more 
discriminatory information to help the model learn. By look-
ing at participants’ photos (results in Figure 7) and by reading 
their responses, we find that the majority of the participants 
share this intuition, but not all. In detail, 23 participants (age 
21–60, µ=37.57, σ=9.87) did not include any kind of variation 
in their TR1 teaching set – 3 of them reported never having 
heard of machine learning, 12 had heard of it but did not know 
what it does, and 8 had a broad understanding of what it is and 
what it does. Immediately after training, when asked about 
what they considered important, 5 participants referred to the 
need for consistency, which in this context contradicts the way 
machines and people learn. For instance, P6 said “I figured I 
needed to be consistent when I took the picture so they looked 
similar.” and P30 “Keeping the pictures the same.” Others, 
who did not consider this type of consistency, mentioned that 
it is important to have a good quality photo where the object 
is well framed (4) with visible labels (8) and images that are 
clear (6) with ample light (2). Without even having tested their 
model, P2 said: “Getting different angles and perspectives so 
the trainer could recognize it more easily” – a contradiction 
to their initial teaching set that had no variation. We observed 
that in TR2, P2 reflected on this observation and varied both 
the object size and viewpoint. Only two other participants 
from this group did so as well, P5 and P18. They said having 
the “name and color in” is important in TR1 but also varied 
the camera distance (P5) and angle (P18) in TR2. 

However, the majority of participants (N = 77) diversified 
examples in their first attempt. They varied either size 
(N = 65) or viewpoint (N = 63), with some considering lo-
cation (N = 39) and illumination (N = 19). Light exposure 
was least diverse (N = 4). Looking at responses on impor-
tant considerations for training, many participants (N = 52) 
mentioned these strategies7 and reflected on the need for di-
versity with concrete terms such as “different”, “various”, 

“all”, “many”, “multiple”, “every”, “variety”, and “difference” 
combined with “angles”, “views”, “sides”, “facets”, “back-
ground”, “lighting”, “distance”, and “positioning”. These 
terms correspond to the four dimensions of our coding scheme 
informed from prior work on visual object understanding [45], 
highlighting that humans’ strategies for machine teaching par-
allel their own abilities. However, only 11 participants (age: 
µ = 34,σ = 8.71) incorporated diversity in their teaching set 
6A preliminary analysis of this appears in a work-in-progress [29]. 
7All questions, instructions, and prompts prior to training were care-
fully edited not to prime participants towards our coding attributes. 

across all four dimensions – 3 reported having heard of ma-
chine learning with no further understanding, and 8 had a 
broad understanding of what it is and what it does. 

Being fair and consistent between classes. Model consis-
tency across classes is a desirable trait in machine learning 
with many social implications for fairness, whose definition is 
still being debated in the community (e.g., [44, 43]). There is 
anecdotal evidence on non-experts learning to balance class 
proportions in the training set over multiple iterations [22, 65]. 
By keeping the number of training examples constant, we look 
into their behavior across other potential disparate treatments. 
Given that many participants considered diversity important 
for good performance, we explore how fair8 (i.e., consistent) 
they are in incorporating diversity across their three objects, 
with results shown in Figure 7. Beyond the 23 participants 
who did not introduce any variation for any object, we find 
that there were 30 other participants that were consistent. This 
is promising, especially since this included participants from 
all levels of familiarity with machine learning: not familiar 
at all (N = 1), slightly familiar (N = 11), somewhat familiar 
(N = 17), and the only participant in our study that reported 
being extremely familiar (N = 1). While none of these partici-
pants explicitly mentioned consistency as important, we find 
that more than half of them (N = 16) continued doing so in 
their second attempt at training, in TR2. For the remaining 
47 participants, their inconsistencies were found in variations 
related to all four dimensions: object size (N = 21), viewpoint 
(N = 31), location (N = 10), and illumination (N = 5). 

Deciding what to show in the teaching set. We analyze 
the fine-grained count attributes in teaching and training sets 
(Figure 8) to uncover common teaching patterns across par-
ticipants. Khan et al. [35] observed that one of the most 
prominent teaching strategies for a binary classification task 
among non-experts, called the extreme strategy, is consistent 
with the “curriculum learning” principle [8, 40], where par-
ticipants start with the most extreme examples and continue 
with those closer to the decision boundary9. While our batch 
teaching task does not allow for a similar sequential analysis, 
we find that almost all participants (N = 98) included the logo 
(or label) of objects in their teaching sets; on average 84.9% 
(SD = 25.0) of any participants’ images included logos. This 
indicates that participants understand that logos and labels 
tend to include the most discriminatory features, which serve 
as the most extreme examples. Then, through variation they 
add less discriminative viewpoints that are closer to the deci-
sion boundary. Indeed, 18 participants explicitly mentioned 
logos or labels being important in training. For instance, P36 
said “... trying to have a constant label view” and P46 “... a 
clear shot of the front of the package with minimal background 

8In this work classes are object instances that fall within the same 
category and consequently share similarities such as shape, size, and 
material in the context of the decision making task of incorporating 
variation. Thus, we consider “individual fairness” [20], where “sim-
ilar individuals should be treated similarly”, and explore whether 
object instances within a category are being treated the same by a 
participant when introducing variation in the training photos. 
9In the Khan et al. [35] study participants did not generate the exam-
ples but they ordered them as most representative of the two classes 
and chose to teach one by one using all of them or a subset. 

https://kappa=0.73


interference.” When looking deeper at these responses though, 
we find that many of the participants assumed that the machine 
would read the text. For example, P28 said “It [the model] 
recognizing the different cereals by name” and P44 “Getting 
a clear shot where the writing and the size are clear.” 

In terms of the background, we find that the majority were 
textured (N = 66) or cluttered (N = 62), while many used 
plain (N = 48) and a few none at all (N = 11) – the latter two 
are preferred since very few varied the object location. We 
observe that 26 participants included their hands in the photos. 
The presence of hands has been leveraged to better distinguish 
objects by modeling the contextual relationship between grasp 
types and object attributes [13] or to estimate the object of 
interest in a clutter environment [38, 39]. However, given this 
study’s fine-grained task, the grasp is expected to be similar 
across object of the same category. Thus, the presence of 
the hand doesn’t really help, especially if it is not applied 
consistently across classes. More surprisingly, we observe 
that 8 participants reshaped their objects, e.g., opened the 
lid, and 4 decided to train on the content of the object as 
well, e.g., cinnamon powder. When asked what is important 
for training, one of these participants, P76, said: “Getting 
lots of different angles and different ways the spice could 
be portrayed.” In general, there were not many photos with 
quality issues. Participants took clear photos in most cases 
and many of them mentioned the importance of image quality 
in their responses, but some (N = 36) mistakenly took a few 
blurry photos. Also, objects sometimes appeared too small 
(N = 17) and occasionally the light was dim (N = 9). 

Debugging and including edge cases in testing. When 
asked to evaluate their model in TS1, many participants 
(N = 30) did not diversify their images at all – 2 of them 
reported never having heard of machine learning, 17 had heard 
of it but didn’t know what it does, and 11 had a broad under-
standing of what it is and what it does. This means that they 
did not check whether the recognizer is robust. We also find 
that compared to training, fewer participants diversify their 
testing set across object size (N = 57), viewpoint (N = 49), 
location (N = 21) and illumination (N = 6). This could be ex-
plained by many factors such as: smaller number of photos in 
testing (15) compared to training (90); difficulty in conceptu-
alizing robustness; assumptions about machine’s generalizing 
capabilities; not anticipating future uses of the model under 
different circumstances; or simply minimizing efforts for this 
HIT. Logos were still included by the majority of the partici-
pants (N = 98) and the same number of participants (N = 11) 
took photos that did not include any background, keeping their 
testing data consistent with their training examples. Similar to 
what Zimmermann et al. [65] observed, participants “enacted 
[testing] practices wherein their models appeared to have high 
reliability but questionable validity.” We also find that par-
ticipants took fewer photos with plain background (W = 756, 
Z = 2.17, p = .030, r = 0.15), and objects that were too small 
(W = 126.5, Z = 2.61, p = .011, r = 0.18) using a Wilcoxon 
signed rank test. None of the interesting object reshaping, 
or content images present in training, carried over to testing; 
a similar behavior to Kacorri et al. [34], with “exaggerated” 
variation in training unobserved in testing. 

Do Teaching Strategies Evolve Through Iteration? 
Prior work indicates that the interactive nature of teach-
able interfaces can help users uncover machine learning con-
cepts [27]. We ask participants whether they would do some-
thing differently were they to retrain the model for a second 
time and offer a bonus if they could make it even more robust. 

Updating teaching strategies to improve performance. “Is 
this information a signal or noise” was one of the most com-
mon debug strategies by experts [63]. We investigate whether 
participants employ a similar approach by comparing TR2 to 
TR1 in terms of the variation, inconsistency, and other im-
age characteristics, which serve as information signals for the 
model. Using a McNemar test for binary and Wilcoxon signed 
rank test for count attributes, we find the only significant dif-
ference is variation of location as observed by changes in the 
photo background (VLocBg). More participants diversified 
the background in their teaching set on the first attempt than 
the second (χ2(1, N = 100) = 4.35, p = .037,φ = 0.21, the 
odds ratio is 11.86). As in Zimmermann et al. [65], we sus-
pect that participants were trying to maximize performance 
by increasing consistency between their training and testing 
data, even though in our prompts we had defined robustness as 
ability to recognize the objects anywhere, anytime, for anyone. 
No other significant differences were observed, though this 
could be partially explained by limitations in the binary nature 
of our variation and inconsistency attributes failing to cap-
ture changes in magnitude. We shed light into other possible 
explanations by looking at participant’s responses. 

When asked about what they would do differently if they were 
to retrain, some (N = 22) said "nothing", "wouldn’t do it dif-
ferently", and "would not change anything". Few said they 
had nothing to change because they were satisfied with the 
performance in TS1 (N = 6). For instance, P23 said "Noth-
ing it seems very robust after the learning phase." This was 
not a surprise given that in TS1 participants did not opt for 
a thorough evaluation, as discussed above. "Having no idea 
what to change" was also mentioned by some (N = 19) re-
flected by terms such as "not sure", "unsure", "I can’t think 
of anything", "have no idea", or "don’t know". Indeed, we 
find that the models of these 22 participants perform well 
on their own test data with an average F1 score of 0.981 
(SD = 0.048)10 and significantly better than the rest of the 
participants (U = 1472, Z = 5.22, p < .001,r = 0.52); a trend 
that carries over to the second attempt. 

Few participants wanted to change elements of the teaching 
process such as improving the testbed (N = 3), taking photos 
faster (N = 1), adding more classes (N = 2), or adding more 
samples (N = 6). Yang et al. [63] characterized the latter as 
“most non-experts’ only strategy to improve a model’s per-
formance.” Others focused on improving the quality of their 
teaching set such as better focus (N = 5), more light (N = 2), 
show labels (N = 2), better framing with a certain distance 
(N = 1), and centering (N = 1). Few participants (N = 2) 
explicitly mentioned the importance of the background, with 
P83 saying “I would try to change the color of the background 
to ensure that it knows what the actual object is. I think it was 

10Only recognition labels are available in testing and no scores. 



confused by the curry because of the black stove background 
which may look like the black cap of the cumin.” Surprisingly, 
one participant (P85) pointed to discriminatory limitations of 
their objects uncovering challenges in fine-grained classifica-
tion by stating “Change objects to not look so similar.” 

Last, some participants (N = 22) explicitly indicate that adding 
more variation in their training set is something they would 
do. For instance, P14: “I would take a wider variety of an-
gles” and P21: “Take picture from many different locations 
lighting and positions.” Only one, P36 mentioned doing so in 
testing, “Test different sizes”. When examining what they ac-
tually did in their second attempt at training, we find differing 
approaches: some indeed started incorporating new variations 
(N = 13), some perhaps changed the magnitude as variations 
were present in both first and second attempt (N = 5), and 
others (N = 4) did not make those changes. While variation 
for these 22 participants was mostly limited to the 4 dimen-
sions (size, viewpoint, location, and illumination), few other 
participants (N = 5) indicated that they would also include 
different forms of the same object, e.g., different containers, 
perhaps difficult within this study. 

ANALYSIS OF PERFORMANCE 
We report the performance of the models that the participants 
train by looking at the predicted labels during the first and 
second round of testing using the F1 score measure (F-score). 

Relating observed behavior to performance. Participants 
achieved on average a 0.75 (SD = 0.38) F-score in their first 
attempt to train the model. Using a multiple linear regression, 
we explore how attributes capturing their behavior in teach-
ing and testing may relate to the relative performance of their 
models. While this performance is far from an ideal controlled 
robustness11, it can provide some context for the observations 
above such as participants’ behavior in the second attempt. 
We use a square root transform of the F-score12 as the de-
pendent variable. As independent variables, we use variation, 
inconsistency, and count attributes in TR1 and TS1 and their 
interaction. For model selection, we use stepwise variable se-
lection based on Akaike information criterion (AIC) [2] with 
results shown in Table 5. We find that only 28% of the vari-
ability in recognition performance is accounted by this model, 
as indicated by the adjusted R-squared metric. While this 
is modest, it is not surprising, as there are many factors that 
can contribute to the performance of an image classification 
algorithm. For instance, performance can vary based on object 
similarities, a common challenge in fine-grained classification; 
a similarity that is not directly captured by our attributes. 

In training, we find that variation in light exposure (VIllum-
Exp) relates positively with the F-score, though very few par-
ticipants included this type of diversity in their teaching set. 
We also see that the number of images where the object is 
taken against a plain background (CPlainBg) has a negative re-
lationship with model performance. Though counter-intuitive, 
we suspect that lack of diversity in the background might have 

11Such a neutral test is unrealistic in our study since participants 
choose different objects in different environments. 

12Transformation is used to meet the normality assumption. 

Attempt Variable Estimate Std. Error t value 
(Intercept) 0.939 0.048 19.79*** 
VIllumExp 0.167 0.063 2.64** 
VIllumSrc -0.076 0.049 -1.55TR1 CCrop 0.000 0.002 0.12 
CPlainBg -0.002 0.001 -2.50* 
CTextBg -0.001 0.001 -1.55 
VSizeDist -0.068 0.037 -1.81. 
VViewSide 0.108 0.038 2.83**TS1 VViewPos -0.089 0.045 -1.97. 
CCrop 0.048 0.012 4.04*** 
CClutBg -0.007 0.003 -2.14* 
QBlurry -0.016 0.009 -1.74. 

TR*TS CCrop -0.001 0.000 -3.16** 
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
Residual standard error: 0.157 on 87 degrees of freedom 
Multiple R-squared: 0.3681, Adjusted R-squared: 0.2809 

F-statistic: 4.223 on 12 and 87 DF, p-value: 3.195e-05 

Table 5: Modeling recognition performance based on attributes 
capturing variation, inconsistency, and other characteristics. 

contributed to a model that does not generalize well, e.g., when 
tested. This seems to be supported by the negative relationship 
of the number of cluttered background images during testing. 

In testing, we find that variation in object size (VViewSide) 
relates positively with the F-score. We also see that the num-
ber of images where objects appear to be cropped (CCrop) has 
a positive relationship with model performance. A plausible 
explanation could be that these attributes capture participants’ 
behavior of zooming in on the object’s most discriminative 
features, thus helping the model to distinguish objects. How-
ever, when considered as an interaction between training and 
testing (TR1*TS1-CCrop), this attribute appears to be nega-
tively related to the model performance perhaps pointing to 
the sensitivity for consistency between the two – if you crop 
objects in one case, then it helps to do so in the other as well. 

Improving performance the second time around. As 
shown in the previous analysis, we observe few changes in 
participants’ teaching strategies in the second training as cap-
tured by our attributes – though some participants said they 
would do things differently. We find that this is also reflected 
when comparing the performance of their second model to the 
first. On average, participants achieved a 0.746 (SD = 0.38) 
F-score the first time and a 0.749 (SD = 0.28) the second 
with no significant change (W = 80.5,Z = −0.16, p = .871). 
However, participants who indicated they would do noth-
ing to improve their model after the first attempt (N = 22), 
seem to achieve significantly higher performance than the rest 
(U = 1472,Z = 5.22, p < .001, r = 0.52) and this is a consis-
tent trend across both attempts (U = 1459.5,Z = 5.12, p < 
.001, r = 0.51). Looking at these relative low F-scores for 
such a simple 3-way classification task, it is surprisingly that 
the second group of participants did not further improve their 
performance even though they expressed reasonable strategies. 
Perhaps the incentives were not strong enough and they had a 
higher threshold for errors, or there was not enough time and 
iterations to try things out. It could simply be that their object 
instances were too similar. Indeed, the majority (N=38) of the 
participants in this group had chosen spices. 



DISCUSSION 
We see how our results, some being new insights, others 
strengthening prior empirical and anecdotal evidence, can 
help better understand non-experts’ interactions with machine 
teaching and guide the design of future teachable interfaces. 
We highlight some of them with the following suggestions: 

Account for teaching strategies: Our observations suggest 
that non-experts mainly tend to teach with clear representative 
examples and sometimes incorporate examples that are closer 
to the decision boundary through variation, which draws from 
parallels to how humans generalize for similar recognition 
tasks. In the case of object recognition, these were object 
size, viewpoint, location, and illumination [45]; though all 
four were considered only by a few. Our analysis also suggest 
that beyond class imbalance [22, 65], there can be other dis-
parate treatments such as inconsistency in the way variation is 
incorporated across classes. 

Anticipate misconceptions: A prevalent misconception re-
lates to consistency. While it is true that consistency between 
training and testing data will result in better performance, as-
suming they both represent real-life examples, some thought 
that being consistent entails teaching with multiple identical 
examples with no variation whatsoever. Other misconcep-
tions relate to the capabilities of the machine for reasoning. 
For example, participants would train with visually disparate 
examples from both the container and its content separately. 
Others would assume that the models were able to infer the 
text. 

Help users craft evaluation examples: Our observations in-
dicate that testing examples tend to be less diverse or not at all. 
Thus, it is no surprise to see many people wanting to change 
nothing, being satisfied with the performance, or not knowing 
what to do. Even those who did change their behavior when 
training for a second time, it was to not vary the background 
rather than making their model more generalizable. Help may 
look different based on the goal of the teachable interface. If 
it is personalization (e.g., [33]), then it could mean guiding 
the user to generate examples that are more representative of 
future use cases [22]. However, if it is an application intended 
to uncover machine learning concepts (e.g., [27]) perhaps pro-
moting more model-breaking examples [60] would be more 
appropriate; though in the context of a teachable interface this 
could lead to users training the model with less authentic data 
to simply improve its performance [65]. 

This work has several limitations listed below: 

Task: We explore machine teaching in a narrow context, that 
of a supervised 3-way image classification task. This allows 
us to dive deep in our analysis using a fine-grained scheme 
when coding participants examples informed from prior work 
on visual object understanding. However, it also limits the 
generalizability of our findings. We attempt to overcome this 
by connecting our results with that of prior work when possible. 
Three, the smallest number for multiclass classification, was 
selected to minimize challenges in finding different object 
instances within a category in a real-world environment as 
well as the task completion time (already 40 minutes long). 

Study: While teachable object recognizers are real-world ap-
plications [38], they are typically intended for blind users. 
Thus, the sighted participants may lack motivation in this 
study. We attempt to compensate for this lack of incentives 
with a performance-based payment scheme [28] creating the 
impression that we have a ‘secret’ test to distinguish models 
that are more ‘robust’; though on our end this is merely a naive 
quality examination. By doing so, combined with the fact that 
the testbed shows only the predicted labels but no confidence 
scores in testing, we might have limited participants’ criteria 
for model evaluation [22] to just correctess. 

Analysis: Through crowdsourcing we were able to quickly 
recruit a large participant pool and collect data outside a lab in 
the users’ environment. However, this limited our control over 
the object instances that participants could use as well as the 
opportunity to create our own evaluation set for comparing the 
performance of the models against the same data. 
To allow some time before testing for the photos to be received 
on our server and the models to be trained on our GPUs, 
participants were asked to review their training photos and 
select 10 out of 30, 5 out of 10, and 1 out of 5. We are 
still analyzing these data while considering more fine-grained 
variation and inconsistency attributes. 

CONCLUSION AND FUTURE WORK 
We have presented a crowdsourcing study, where MTurkers 
choose three objects in their environment and iteratively train 
a model to distinguish between them in real-time using the 
camera on their mobile phones. By doing so, we were able to 
explore, with a large participant pool (N = 100), an instance 
of a machine teaching problem with a task where many non-
experts can serve as the oracle. Our findings and insights 
can contribute to the ongoing discussion on how non-experts 
conceptualize, experience, and reflect on their engagement 
with machine teaching. To allow for study replicability and 
future comparisons, we have provided a detailed description 
of our testbed, its framing within the machine teaching prob-
lem space from Zhu et al. [64], and the list of questions and 
prompts used in the study. 

Our results are based on a fine-grained analysis of the par-
ticipants’ examples contextualized by their responses, back-
ground, and model performance. We discuss how they can 
guide the design of future teachable interfaces to anticipate 
users tendencies, misconceptions, and assumptions. Given 
our research group’s interest in teachable interfaces for acces-
sibility [33], our next step will be to explore whether these 
insights and data from sighted participants could be lever-
aged for the design of effective teachable object recognizers 
for blind users. Our rationale is that insights from this study 
can perhaps enable us to decouple non-experts misconcep-
tions from challenges in camera manipulations among blind 
users [38]. 
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