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ABSTRACT 
Text entry on a smartwatch is a challenging problem due to 
the device’s limited screen area. In this paper, we introduce 
the SplitBoard, which is a soft keyboard designed for a 
smartwatch. As the user flicks left or right on the keyboard, 
it switches between the left and right halves of a QWERTY 
keyboard. We report the results of two user experiments 
where the SplitBoard was compared to an ordinary 
QWERTY keyboard, the ZoomBoard, SlideBoard, and 
Qwerty-like keypad. We measured the initial performance 
with new users for each method. The SplitBoard 
outperformed all other techniques in the experiments. The 
SplitBoard is expected to be a viable option for smartwatch 
text entry because of its light processing requirements, good 
performance, and immediate learnability. 
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INTRODUCTION 
Many manufacturers have begun to produce smartwatch 
products. Unlike the early watch-sized computers [11], new 
smartwatches have the computing power and battery life 
comparable to early smartphones. One of the challenges in 
migrating applications from the smartphone to the 
smartwatch is the relatively smaller screen size of the 
smartwatch; there does not seem to be sufficient room for 
some GUI components, such as the soft keyboard.  

It is doubtful that the QWERTY soft keyboard should be 
adopted on smartwatches. In order to find a soft keyboard 
design that is suitable for a smartwatch, we examined a 
diverse set of alternatives. A seemingly naïve soft keyboard 
design, that we call SplitBoard, implemented in this study, 
turned out to be a promising alternative. The SplitBoard is a 

scrolling QWERTY keyboard. As the user flicks left or 
right on the screen, the SplitBoard switches between the left 
and the right halves of a QWERTY keyboard. The 
SplitBoard layout utilizes the QWERTY layout to ensure 
immediate learnability. To assess the initial performance of 
the SplitBoard, we conducted two comparison experiments 
with users who had no prior exposure to the interface. The 
SplitBoard outperformed the four other techniques included 
in the experiments. 

RELATED WORK 
Text entry for a smartwatch can be implemented through 
speech recognition, handwriting recognition, a separate 
device such as a Bluetooth keyboard, or a few buttons in the 
watch frame with an encoding scheme such as MDITIM [5] 
or EdgeWrite [14]. However, soft keyboards are the 
dominant text entry technique on smartphones and tablets. 
We were interested to see how well soft keyboards would 
perform on a smartwatch.  

The central theme in miniature soft keyboards is the 
balance between the number of keys and the ambiguity of a 
key press [6]. The multi-tap technique used in 12-key 
telephone keypads is an example of explicit, user-initiated 
disambiguation of ambiguous keys. The English language 
multi-tap requires an average of over two key presses for 
each character [6]. Assigning frequent characters to shorter 
key press sequences can reduce the number of key presses. 
An example of such an optimization is the QWERTY-like 
keypad (QLKP) used in our comparison experiments as a 
representative of multi-tap text entry methods. An 
evaluation by Hwang and Lee [2] showed that the QLKP 
was superior to the standard telephone character layout.  

Dictionary-based disambiguation can relieve the user from 
explicit disambiguation by key presses. On the 12-key 
telephone keypad, dictionary-based disambiguation brings 
keystrokes per character (KSPC) down to about one [6]. A 
word gesture keyboard [15] combines a conventional soft 
keyboard with the ability to draw the key sequence on the 
keyboard without lifting the finger for faster entry of words. 
A language model is needed to disambiguate the input. 
Word-gesture keyboards are widely available on 
smartphones; however, it is not known how well they 
perform on the small displays of smartwatches. We did not 
include techniques with language databases in our 
experiments. Dictionary-based data can be used in diverse 
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ways for each keyboard design, which could be an 
additional comparison parameter in future work. 

Tapping and sliding the finger on the display can be 
combined on touch screens. Sliding gestures can be either 
straight lines akin to selecting in one-level marking menus 
[3] or recognized as shapes akin to handwriting [4]. A 
publicly available example of a tap-gesture keyboard is the 
MessagEase system [9]. While tap-slide combinations can 
save motor effort and are potentially fast for experienced 
users, planning the tap-slide movements is difficult for new 
users, which makes these movements time consuming [3, 
12]. Combining a tap or key press with some other measure, 
such as the tilt of the device [13] or pressure applied [8], 
has been proposed. 

Using a two-step selection technique, where the first pointer 
location is used as the center of the region to zoom in for a 
subsequent final target selection, is a well-known technique 
in eye-pointing [1]. This technique is used to overcome the 
noise in the tracker signal. Similarly, finger pointing is very 
noisy in extremely small devices. ZoomBoard [10] is a text 
entry technique based on this idea. In an evaluation using a 
tiny (16 x 6 mm) section of the iPad3 display, ZoomBoard 
outperformed a QWERTY soft keyboard. The superiority of 
ZoomBoard on the smartwatch display is not clear because 
the smartwatch display is usually larger than 16 x 6 mm. 

SPLITBOARD 
The QWERTY layout is wide; therefore, the keys become 
very narrow on a smartwatch. In SplitBoard, we divided the 
QWERTY layout into two sections: left and right. In 
addition to these two main sections, SplitBoard has a third 
component, as shown in Figure 1, for mode keys used for 
selecting upper case, numeric, and symbol entry modes, 
including an enter key. A horizontal flick gesture is used to 
change the section of the keyboard to be displayed.  

 

Figure 1. (a) Conceptual drawing of the SplitBoard and (b, c, 
and d) the three parts of the SplitBoard. When a user flicks 
from right to left on the part (b), the screen switches to (c). 

Text can be entered by tapping on the keys. The space and 
backspace keys are located at the bottom of the screen. 
These keys are narrow but can be easily selected by 
touching the bezel below the screen. In our implementation 
of the SplitBoard, we displayed six keys per row with a 

two-column overlap. The number of gestures per character 
(GPC) changed as a function of the number of keys on a 
row. We conducted a simulation that estimates GPC using 
the 500 phrases set by Mackenzie and Soukoreff [7]. The 
result was approximately linear from 1.4 at 5 keys per row 
to 1 at 10 keys per row. We chose a two-column overlap as 
a compromise between key size and the number of flicks 
needed per character. The GPC in this case was 1.28. 

EVALUATION 
The conventional QWERTY keyboard (the QWERTY) is 
an obvious baseline for comparison. The ZoomBoard was 
found to be faster than the QWERTY on a very small 
keyboard [10]. The larger key size offered by the 12-key 
multi-tap technique was considered potentially important; 
therefore, we included the QLKP, which was found to 
perform better than the standard ABC keypad [2]. Finally, 
we wanted to include a representative of the tap-slide 
keyboard group. The MessagEase would have been our 
choice, except recent results indicate that the foreign layout 
causes a significant learning hurdle for new users [12]. 
Instead, we chose a tap-slide adaptation of the QWERTY 
layout that we call SlideBoard. In the SlideBoard, each key 
has two characters as shown in Figure 4c. We disambiguate 
key presses by sliding either left or right after landing on a 
key. A quick preliminary evaluation (3 participants, 
transcribing 5 phrases) showed that the SlideBoard (10.8 
WPM) was faster than the MessagEase (<7.5 WPM [12]).  

Before conducting the user study, we ran a simulation to 
compute GPC for the keyboards included in the evaluation. 
The results were 1.85 for both the ZoomBoard and the 
SlideBoard, 1.53 for the QLKP, and 1 for the QWERTY. 
For the ZoomBoard, the space character was counted as a 
single swipe gesture. For the SlideBoard, a tap and a 
following slide were counted as separate gestures. For the 
QLKP, we assumed that a user uses the space key for multi-
tap segmentation when entering two characters in a same 
key consecutively. This result implied a better performance 
of the SplitBoard than other keyboards except the 
QWERTY. 

Participants 
We recruited 24 participants from our university. The 
participants were not native English speakers, but worked 
and studied in an English-speaking environment. The 
participants were divided into two groups of 12 participants. 
Participants in Group A (3 female, 9 male, mean age = 22.4) 
used the SplitBoard, ZoomBoard, and QWERTY. 
Participants in Group B (3 female, 9 male, mean age = 22.7) 
used the SplitBoard, QLKB, and SlideBoard. 

Apparatus 
The experiment was conducted on a Samsung Galaxy Gear 
with a 29.3 x 29.3 mm touch screen. The presented phrase 
and entered phrase were displayed above the keyboard area, 
as shown in Figure 1. The phrases were picked randomly 
from the 500 phrases set by Mackenzie and Soukoreff [7]. 
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difference between the TERs of SplitBoard and SlideBoard. 
The average UERs of the SplitBoard, QLKB, and 
SlideBoard were 0.4%, 0.4%, and 0.7%, respectively. 

Out of the 12 participants in Group B, 9 preferred the 
SplitBoard to the other two keyboards. In addition, 10 of 12 
participants least preferred the QLKB because of both its 
unfamiliar layout and the 2-second timeout to discriminate 
keys, which often caused errors. Three participants ranked 
the SplitBoard as the second most preferred keyboard due 
to the frequent switching required for certain words.  

DISCUSSION 
Oney et al. [10] showed that the ZoomBoard outperforms 
the QWERTY for a keyboard size of 16 mm. Our results 
show that this is no longer true for a keyboard size of 29 
mm; both the SplitBoard and QWERTY outperformed the 
ZoomBoard. It seems worthwhile to investigate the relative 
efficiency of these keyboards for different keyboard sizes.  

There are additional topics to be considered as part of future 
work. First, we are interested in the effect of long-term 
learning on the efficiency of these keyboards. We measured 
only beginner performance in the current study and the 
relative efficiency of the keyboards may change when 
people further develop their skills. Another question relates 
to the efficiency of these keyboards in mobile settings. The 
performance of the QWERTY in the current study may be 
due to the stationary writing situation, and standing or 
walking users might not be able to hit keys equally well.  

Yet another question is how the use of a language model 
would improve these keyboards. In this study, we avoided 
any dictionary-based features and focused only on the key 
entry efficiency of the keyboards. This is a clear 
shortcoming of this study, considering that every modern 
touchscreen keyboard uses a language model. For more 
practically meaningful results, it is necessary to compare 
these keyboards after they are augmented with a dictionary-
based feature. Among the keyboards compared in the 
current study, we expect that the QWERTY may benefit 
most from a dictionary-based feature (e.g., dictionary-based 
auto-correction) because it suffers from the highest error 
rates. The QWERTY with an auto-correction feature may 
become a viable option considering its high WPM despite 
the high error rate in this study. 

A language model may be also used to optimize the key 
layout of the SplitBoard. The bigram statistics of a language 
may be used to design a key layout to minimize switching 
between the two sides of the SplitBoard. QWERTY users 
may be unfamiliar with the resulting key layout, but there 
may exist an optimal trade-off to reduce switching while 
maintaining learnability. 
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