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Abstract 
Object recognition technologies hold the potential to support blind 
and low-vision people in navigating the world around them. How-
ever, the gap between benchmark performances and practical us-
ability remains a signifcant challenge. This paper presents a study 
aimed at understanding blind users’ interaction with object recog-
nition systems for identifying and avoiding errors. Leveraging a 
pre-existing object recognition system, URCam, fne-tuned for our 
experiment, we conducted a user study involving 12 blind and low-
vision participants. Through in-depth interviews and hands-on er-
ror identifcation tasks, we gained insights into users’ experiences, 
challenges, and strategies for identifying errors in camera-based 
assistive technologies and object recognition systems. During inter-
views, many participants preferred independent error review, while 
expressing apprehension toward misrecognitions. In the error iden-
tifcation task, participants varied viewpoints, backgrounds, and 
object sizes in their images to avoid and overcome errors. Even after 
repeating the task, participants identifed only half of the errors, 
and the proportion of errors identifed did not signifcantly difer 
from their frst attempts. Based on these insights, we ofer impli-
cations for designing accessible interfaces tailored to the needs of 
blind and low-vision users in identifying object recognition errors. 
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1 Introduction 
The feld of computer vision has made signifcant strides, achieving 
considerable benchmarking rates in object recognition tasks. Yet, de-
spite these advancements, real-world applications often encounter 
substantial discrepancies between expected and observed perfor-
mance [21, 62]. Factors such as complex tasks, resource limitations 
(e.g., mobile device processing), and inputs that deviate from the
training data (e.g., classifying images with personal items or clut-
tered backgrounds collected by a user) pose persistent challenges, 
leading to higher-than-anticipated error rates in practical scenar-
ios [9]. Moreover, the vulnerability of object recognition systems 
to adversarial attacks further compounds these challenges [31, 47]. 
While image classifers hold potential for supporting the blind com-
munity in day to day tasks, they are hindered by their inability to 
efectively convey recognition errors, especially when tactile or 
olfactory verifcation is impractical (e.g., distant objects or scenes).
Thus, despite advancements, the gap between benchmark perfor-
mance and real-world usability remains a critical concern for assis-
tive object recognition systems. 

In this work, we explore the challenges that blind users face 
when handling object recognition errors and the strategies they use 
to overcome them. Specifcally, we conduct a user study with 12 
blind and low-vision participants, using a two-pronged approach: a 
semi-structured remote interview and a hands-on error identifca-
tion task in participants’ homes. In the interview, we aim to answer 
the following research question: “What are the experiences of blind
and low-vision users with error handling in camera-based assistive 
technologies?” Participants describe how often they verify recogni-
tion results, the frequency with which they encounter errors, the 
importance they place on these errors, and the challenges they face 
in identifying them. To better contextualize their responses, we 
discuss their confdence in photo composition, the frequency of 
use, and the purposes for each of their camera-based assistive tech-
nologies. The interview is then followed by the experiment with 
an error identifcation task, where we aim to answer the following 
research questions: “How do blind and low-vision users identify and
respond to object recognition errors, and what are the relationships 
between recognition error types, decision-making time, confdence 
levels, and task repetition?” Participants interact twice with URCam,
an object recognition iOS app that we developed for this experi-
ment. We fne-tuned the underlying model to recognize 15 object 
stimuli relevant to our study. The app provides object labels or a 
’Don’t know’ response when the recognition confdence is low. To 
better contextualize the results, we report the accuracy of URCam 
during the task and manually code the strategies participants use 
for capturing photos when URCam responds with ’Don’t know.’ 
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Findings from our study provide insights on blind users’ interac-
tion with error-prone object recognition technologies. Interviews 
indicate that many participants preferred to independently review 
photo quality and identify errors in camera-based assistive tech-
nologies. They often triangulated information using contextual 
cues, their remaining vision, multiple trials, or other AI apps, rather 
than seeking sighted assistance. Although the frequency of encoun-
tered errors varied among participants, most expressed concern 
about misrecognitions. However, some did not reported difculty 
in identifying these errors. During the error identifcation task, 
we observed that participants could identify, on average, only half 
of the errors, with most of these being false positives. Notably, 
participants strategically adjusted viewpoints, backgrounds, and 
object size to avoid the “Don’t know” predictions, often rotating 
objects or the camera to reveal diferent angles. We found that 
participants tended to make decisions more quickly when they felt 
more confdent about the accuracy of the predictions. Comparing 
participants’ frst and second attempts at the same task, we did not 
observe a signifcant diference in the proportion of errors identi-
fed. However, there was a notable decrease in time spent to make a 
decision during the second attempt. Additionally, participants’ cer-
tainty regarding recognition correctness decreased in subsequent 
attempts, attributed mainly to inconsistent recognition outcomes 
among similar objects. 

The contributions of this work are the following: (1) Providing 
insights into blind users’ experiences in assessing the quality of 
photos and handling errors in camera-based assistive technology. (2) 
Characterizing the challenges encountered by blind people in using 
object recognition technologies, particularly in error identifcation 
and user’s confdence. (3) Suggesting practical implications for the 
design of object recognition systems, with a focus on error-handling 
mechanisms, based on empirical fndings. 

2 Related Work 
Object recognition, encompassing both object detection and classi-
fcation [12, 73], has been the subject of active research for decades, 
representing fundamental and inherently challenging problems 
within computer vision. Object detection specifcally seeks to as-
certain the precise location and dimensions of objects within an 
image, often represented through bounding boxes [91, 92]. On the 
other hand, image classifcation aims to determine whether certain 
objects, belonging to predefned classes, are present within an im-
age or not [48, 57]. Both object detection and image classifcation 
fnd application in a diverse array of felds, including accessibility. 
Just within the context of technologies for blind and low vision 
people, the focus of this paper, there are a myriad of publications. 
In a recent review by Gamage et al., the breakdown highlights the 
various assistive tasks where this technology is being utilized, cov-
ering a wide range of contexts from handling object and devices, 
orientation and mobility, communication and information, personal 
care and protection, cultural and sports activities, to personal medi-
cal treatment [26]. Given the inherently error-prone nature of this 
technology, understanding and designing for user interactions with 
prediction errors is critical. Below we synthesize prior literature 
that discuss this in the context of assistive technologies for the 
blind and more broadly. 

Table 1: Characteristics of related studies on errors in AI-
infused assistive technology juxtaposed with ours. 
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2.1 Interactions with Errors in AI Technology in 
the Context of the Blind Community 

Previous research has consistently demonstrated the signifcant 
impact of errors on the experiences of blind users. Table 1 illustrates 
previous research examples concerning the ramifcations of errors 
in AI-infused assistive technology. For instance, safety concerns 
regarding malfunctions in autopilot systems of self-driving vehi-
cles pose a primary apprehension for blind individuals who are 
encouraged to use such vehicles autonomously [18, 19]. Similar 
concerns arise in systems where error risks are less critical than 
those in self-driving vehicles but still consequential. For instance, 
studies have shown that minor errors in navigation systems can 
lead to frustration and disorientation, even when the destination 
is just a few meters away (e.g., [74]). Prior studies also highlighted 
the need for blind users to distinguish and handle errors when 
understanding images with AI-based image descriptions [30, 51]. 
These fndings underscore the importance of user-error interaction 
interfaces that provide contextual information and predictions from 
machine learning models to help blind users accurately assess error 
causes and severity. 

Similarly, errors signifcantly impact blind users’ experiences 
with object recognition systems, as blind individuals often rely 
solely on system outputs due to the challenge of verifying them [64, 
75]. Consequently, understanding the implications of errors in AI-
infused assistive technology is critical. Research has highlighted 
instances where such errors have led to adverse outcomes. For 
example, blind users tend to overtrust automatically generated 
captions on social media images, even when the captions are incor-
rect and nonsensical [59]. While some errors in blind navigation 
systems are manageable in familiar environments, they become 
problematic when they can lead to embarrassing situations with by-
standers [1, 55]. Moreover, errors in image recognition systems 
used for controlling household objects can pose safety threats. 
Consequently, robust safety mechanisms are essential for such 
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tools. Given the signifcance of error handling in object recogni-
tion systems for blind users, this work delves into and delineates 
the challenges they face in identifying and recovering from object 
recognition errors with the number of participants, methods, and 
task contextualized within this literature. 

2.2 Interactions with Errors in AI-infused 
Technology in a Broader Context 

While errors are easy to tell in some applications where users can 
understand the outcome from the system and ground truth easily 
(e.g., navigating familiar routes with a way-fnding system), the 
outcome from the system may not be clearly perceived due to the 
characteristics of the task, a poorly designed interface, the com-
plexity of the information, or poor concentration caused by a high 
workload [45, 46]. For example, the ground truth may not be avail-
able immediately when the outcome is provided by the system (e.g., 
medical diagnosis, weather prediction). The ground truth may not 
be straightforward to the user if the system handles data in an unfa-
miliar work domain [76]. Therefore, many researchers have worked 
on developing user interfaces for AI-infused systems aimed at efec-
tively managing errors and aiding users in navigating discrepancies 
between system outputs and desired outcomes. Noteworthy eforts 
include strategies to temper user expectations regarding AI system 
performance [44, 58], alongside the presentation of user-friendly 
interfaces tailored to address errors arising from diverse AI-infused 
applications. 

Gesture recognition technology has found utility in control-
ling an array of devices, from visual displays [50] and robots [63] 
to wearable devices [66, 83], and even in virtual reality interac-
tions [22, 33, 38]. Despite considerable advancements in gesture 
recognition accuracy and usability, input recognition errors persist, 
signifcantly detracting from user experiences [49]. Research en-
deavors have thus delved into comprehending the ramifcations of 
these errors, uncovering that user tolerance is frequently shaped 
more by the context of interaction than solely by system perfor-
mance. Remarkably, users may tolerate recognition error rates of 
up to 40% before opting for alternative interaction modes over ges-
tures [43]. Moreover, endeavors to alleviate the detrimental impacts 
of gesture recognition errors have encompassed various strategies, 
such as real-time error detection and adaptive model adjustments 
based on discerning whether the erroneous inputs stem from user 
mistakes or recognition errors [77]. 

Similarly, in the context of speech recognition systems, while 
signifcant progress has been made in minimizing errors under 
controlled environments, practical challenges such as speaker vari-
ability and ambient noise persist [29, 40, 65]. These errors manifest 
in various forms, including failure to detect speech, misrecognition, 
or incorrect handling of recognized speech [37, 68]. Studies have 
revealed that users overlook more than half of speech recognition 
errors in the absence of visual cues [37]. To address this, researchers 
have explored techniques for automated error detection in speech 
recognition outputs, ranging from visually highlighting potentially 
erroneous words to employing neural network-based predictive 
models [16, 25, 27, 28, 82]. However, despite advancements, predict-
ing speech recognition errors remains an ongoing research area, 
with current methods achieving moderate precision and recall rates. 

Beyond gesture and speech, researchers are also endeavoring 
to mitigate errors in other AI-infused applications, including ro-
botics [56] and autonomous vehicles [85]. In these domains, where 
safety and reliability are paramount, error-handling mechanisms 
play a critical role in ensuring smooth operation and user trust [7, 
71]. Strategies such as fault tolerance, redundancy, and fail-safe 
mechanisms are being explored to minimize the impact of errors 
and safeguard against catastrophic failures [13, 60, 86]. Moreover, 
advancements in simulation and testing methodologies enable re-
searchers to systematically evaluate robustness and user experience 
with errors in real-world deployment scenarios [2, 3, 69]. Overall, 
the quest for error-resilient AI-infused systems represents a mul-
tifaceted and interdisciplinary endeavor, requiring collaboration 
across domains to achieve the vision of intelligent, trustworthy 
technology. 

3 Methods 
To gain insight into blind people’s challenges and strategies in 
handling errors in AI-infused applications for object recognition, 
we carry out a comprehensive two-phase user study. The study frst 
encompasses a semi-structured interview that captures participants’ 
experience with camera-based assistive tools. The interview is then 
followed by an object recognition task, where participants are asked 
to identify errors when interacting with a mobile application in their 
homes. We adopt this two-pronged approach from a prior study 
by Hong et al. [37] looking at challenges and strategies adopted by 
blind people when reviewing automatic speech recognition errors. 
Our study was approved by the Institutional Review Board at our 
anonymized institution (IRB number anonymized). Participants were 
compensated at a 15$/hour rate for a total of $26.21 on average 
($23 − 29, �� = 1.73). 

3.1 Participants 
We recruited 12 blind participants (6 women, 6 men, 0 nonbinary) 
from campus email lists and local organizations. As shown in Ta-
ble 2, their age ranged from 32 to 70 (� = 54.3, �� = 15.2). Three 
participants reported being totally blind, fve having some light 
perception, and four being legally blind. P1 and P2 reported “an au-
ditory processing disorder” and difculty hearing “very high sounds”, 
respectively. Yet, all participants indicated that they faced no prob-
lems in using a screen reader. All mentioned using smartphones 
several times a day. All participants were right-handed except for 
one, who was left-handed (P4). When asked to report their levels of 
familiarity with machine learning, two participants reported being 
somewhat familiar, eight being slightly familiar, and two being not 
familiar at all. We used a 4-point scale for this question, where 
not familiar at all indicated that participants have never heard of 
machine learning, slightly familiar that they have heard of it but 
don’t know what it does, somewhat familiar that they have a broad 
understanding of what it is and what it does, and extremely famil-
iar that they have extensive knowledge on machine learning. All 
questions are available in Appendix A. 

3.2 Procedure 
The study is conducted over two days that may be up to 7 days apart. 
On the frst day, participants engage in a semi-structured interview 
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ID Age Gender Level of vision Onset Familiarity with ML* 

P1 39 Female Light perception Birth Not familiar at all 
P2 67 Male Legally blind 55 Slightly familiar 
P3 62 Female Totally blind Birth Somewhat familiar 
P4 32 Male Legally blind 20 Slightly familiar 
P5 66 Male Light perception 46 Slightly familiar 
P6 61 Male Light perception 41 Somewhat familiar 
P7 70 Male Legally blind Birth Slightly familiar 
P8 50 Female Legally blind 45 Slightly familiar 
P9 69 Female Totally blind 55 Not familiar at all 
P10 66 Female Light perception Birth Slightly familiar 
P11 33 Female Light perception Birth Slightly familiar 
P12 36 Male Totally blind Birth Slightly familiar 

*ML: Machine learning 
Table 2: Participants’ demographics and background. 

and answer questions related to demographics, and technology 
experience. On the second day, they complete a recognition task 
with an object recognition application engineered by our team that 
aims to serve as a testbed. The app is called URCam. During this 
session, participants interact with URCam and a set of given object 
stimuli. They attempt to identify any recognition errors that the 
app might have made and express their confdence. 

3.2.1 Semi-structured interview. The interview lasted 51 minutes 
on average (18 − 90�, �� = 21.37). It was completed remotely 
over Zoom and recorded for later analysis. Beyond demographics, 
participants responded to questions about: 

• frequency of using a mobile device, taking photos, reviewing 
photos, and changing settings of the camera; 

• purpose of taking photos, subjects included, applications and 
devices used, and confdence on photo composition; 

• frequency of use of a camera-based assistive application, its 
usefulness, and device; 

• frequency of verifying the recognition results of a camera-
based assistive application, encountering errors, importance 
of errors, and difculty of identifying the errors; 

• strategy of taking photos with an assistive application, de-
gree of understanding how that application works. 

As shown in Appendix A, questions assessing frequency are cat-
egorized into two groups. The frst includes those answerable with 
an absolute 7-point scale, adopted from Rosen et al. [72] (ranging 
from ‘never’ to ‘several times a day’). For example, ‘How often do 
you take photos or record a video? ’ The second group includes those 
suited to a relative 6-point scale (from ‘never’ to ‘always’) [20] e.g., 
‘How often do you encounter misrecognitions when you use Seeing 
AI? ’ 

3.2.2 Error identification task. Given a set of object stimuli and an 
iPhone 8 device with an object recognition app, participants are 
asked to try to identify the objects using the application. When 
deployed in real-world environments, object recognition errors 
are typically confounded by blurred images, viewpoints with low 
discriminative characteristics, cluttered backgrounds, low saliency, 
and more importantly partially included or out-of-frame objects of 
interest [14, 23, 54]. Thus, we do not conduct this session in our lab, 
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Figure 1: Object stimuli in our study from Kacorri et al. [42]: 
baking soda, caramel cofee, Cheetos, chewy bars, chicken 
broth, coca-cola, diced tomatoes, diet coke, dill, Fritos, 
Lacroix apricot, Lacroix mango, Lays, oregano, roast cofee. 

but move the study to the homes of blind participants. As in Lee et 
al. [52], all study materials are delivered at home, and instructions 
are conveyed via Zoom. Each participant received a laptop where 
the Zoom call is set up for remote communication. Furthermore, 
participants are provided with Vuzix Blade smart glasses, featur-
ing an integrated camera and initiated with the Zoom call. The 
smart-glasses can both enable real-time access to participants’ frst-
person perspectives and allow for recordings of observations for 
subsequent data analysis. At the beginning of the task, the experi-
menter presents a list of 15 objects for reference (Figure 1). During 
each trial, participants randomly select an object, capture its im-
age, and obtain a label from the object recognition app, which is 
communicated via synthesized speech. Upon hearing “Don’t know” 
from the app, indicating that it failed to recognize any object in 
the photo, participants proceed to capture additional photos until 
the app provides a label for an object. Subsequently, participants 
indicate whether the recognition was accurate and express their 
confdence level in their judgment of correctness for the recogni-
tion. After completing the initial 15 trials with all objects (Attempt 
1), participants repeat the process with the objects in a randomized 
order (Attempt 2), totaling 30 trials. Participants are encouraged 
to think aloud throughout the task. Upon task completion, partic-
ipants provide feedback on the difculty level and the strategies 
they employ for identifying errors. 

3.3 Object Stimuli 
For the error identifcation task, we utilize a fxed set of 15 objects 
across all participants (Figure 1). We adopt similar stimuli to those 
previously employed in a study examining the interaction of blind 
users with a teachable object recognizer by Kacorri et al. [42]. We 
adopt their methodology, which involved the selection of objects 
to encompass a variety of shapes, sizes, materials, and visual simi-
larities. While some products, such as baking soda, chicken broth, 
diced tomatoes, and diet coke, featured logos or images on their con-
tainers that difered slightly from those used in the prior study due 
to design updates, the fundamental aspects afecting participants’ 
tactile perception, such as shape, material, and weight, remained 
consistent across all objects. 

3.4 URCam: An Object Recognition App 
For the error identifcation task, we build an object recognition 
app, called URCam, that serves as a testbed; the software used as a 
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basis for experimentation. URCam is fne-tuned using the images 
of objects in Figure 1. The base model of the object recognizer is 
InceptionV3 [81], originally trained on the ImageNet dataset [24]. 
The dataset for fne-tuning comprises photos captured by nine blind 
participants in a previous study by Lee et al. [53], where they trained
a teachable object recognizer. Their dataset includes 225 images for 
each object, totaling 3375 images. Although other existing datasets 
(e.g., [14]) provide images collected by blind and low-vision people,
they did not include fne-grained labels for the specifc objects in 
our study. Therefore, we opted for the dataset collected with blind 
participants that included those objects. Fine-tuning involves 500 
iterations of gradient descent with a learning rate of 0.01. During 
the identifcation task, our study participants interact with URCam 
on an Apple iPhone 8. As shown in Figure 2, upon pressing the 
F� Scan item button, the app transmits the image to a server via
HTTP, where the fne-tuned object recognition model generates 
predictions regarding the image’s label, subsequently relaying it 
back to the participant’s device via voice and visual display. 

To diferentiate between objects within our training set and those 
the app hasn’t encountered previously, we employ a technique 
that assesses the model’s discriminative capacity by measuring 
the entropy of its confdence scores [88]. Specifcally, we establish 
a threshold for both the entropy value and the confdence score 
to determine instances where the model should refrain from pro-
viding a predicted label and instead output “Don’t know”. If the
entropy value exceeds 2.0 or the confdence score falls below 0.4, 
the application synthesizes the phrase “Don’t know” rather than
presenting a predicted label. With this precautionary measure, the 
model strives to abstain from delivering potentially misleading or 
inaccurate predictions when it lacks sufcient confdence in its 
discriminatory abilities. 

3.5 Data Analysis 
The responses from the semi-structured interview and tasks are 
captured via Zoom. We transcribe these responses to enable a com-
prehensive analysis of the participants’ experience and feedback. 
We also explore how participants handle application uncertainty 
(i.e., “Don’t know”) and deal with potential misrecognitions during
the error identifcation task. 

3.5.1 Semi-Structured Interview. We use a thematic coding ap-
proach to fnd the major themes in the participants’ responses [17]. 
To reduce the subjectivity, two researchers cooperate to code the 
responses. One of the researchers transcribes the responses. With 
the transcribed data, the two researchers code the responses in-
dependently and create initial codebooks. They compare the two 
codebooks and code data to resolve the disagreements through 
consensus. After resolving the disagreements (a total of 35 out of 
373 answers), they establish a shared codebook and code the data. 
In the fnal codebook, the responses of 17 open questions in the 
semi-structured interview include a total of 153 codes. 

3.5.2 Error Identification Task. We manually annotate the images 
captured by participants and compare these annotations with the 
object recognition results recorded by the app to assess the accuracy 
of object recognition during the task. We categorize the trials based 
on how well participants identify any object recognition errors by 

Figure 2: A series of screenshots from URCam that was de-
ployed in the study, where participants P1 and P2 experi-
enced correct, incorrect, and uncertain predictions commu-
nicated via a “Don’t know” message. 

analyzing their responses captured in the video recordings. During 
this analysis, if participants cannot tell whether the recognition 
was correct or incorrect, which happened for a total of 7 trials, 
we interpret this as them perceiving that the recognition can be 
incorrect but being very uncertain about it. Specifcally, we group 
the trials into: 

True positive: The object recognition is correct and the par-
ticipant perceive it as correct.

False positive: The object recognition is incorrect, but the par-
ticipant perceive it as correct.

True negative: The object recognition is incorrect and the par-
ticipant perceive it as incorrect.

False negative: The object recognition is correct, but the par-
ticipant perceive it as incorrect.

We examine the correlation between participants’ confdence 
levels, and trial completion time, along these 4 groups. Trial com-
pletion time is manually measured through video analysis, which 
involves recording the elapsed time from when the app provided the 
recognition result to when the participant reports its correctness to 
the experimenter. Additionally, we investigate any adjustments in 
participants’ strategies for capturing photos when they receive a 
“Don’t know” response from the URCam. We categorize the adjust-
ments by looking at variation in background, viewpoint, illumination,
and object size; a coding scheme adopted by Hong et al. [36].
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4 Insights from the Interview 
The central themes explored during the interview encompass blind 
people’s experiences with photography or video recording and their 
interaction with camera-based assistive applications. Our discus-
sion delve into various aspects, such as how blind people assess the 
quality of their photographs, the motivations behind their photog-
raphy, and the methods they employ to discern inaccuracies within 
camera-based assistive apps. 

4.1 Capturing and Reviewing Photos 
By delving into participants’ experiences with capturing photos 
or videos, our goal is to uncover the degree of integration of these 
technologies into the daily routines of blind people. Furthermore, 
through an exploration of the techniques participants employed to 
manipulate camera settings, we aim to uncover insights into their 
approach for capturing photos that would allow them to achieve 
their goal be it sharing them with others or completing visual tasks. 
We fnd that all participants consistently engage in photography 
activities, each capturing photos at least once a month, as depicted 
in Figure 3. This aligns with fndings from a previous study indi-
cating that BLV people actively use cameras for daily tasks [39]. 
One of the primary reasons for using a camera was to share images 
or videos via social media or video calls as shown in prior stud-
ies [39, 78]. The majority (8 out of 12) report taking photos or videos 
more frequently than several times a week. One reason for using a 
camera was to share photos or engage in video calls. For instance, 
P4 explained, “Video calls, share photos, I take videos of bands as I 
play songs. I’ve got a YouTube channel with several hundred videos 
of shows I’ve gone to.” Additionally, using assistive technology was 
cited as another reason, as described by P9: “Sometimes I’ll check to 
see what SeeingAI will say. Just curious to know, what the app will 
say about. I’ve used glasses with an app Aira. [...] if you’re in like 
Walgreens, you can connect with Aira and they will tell you what’s 
on the shelf.” During their photographic endeavors, participants 
tend to maintain consistent camera settings and environmental 
conditions. The majority (8 out of 12) of participants reported never 
altering their camera settings. Among the participants who did 
make adjustments (4 out of 12), modifcations primarily aimed to 
optimize lighting conditions. Specifcally, three participants sought 
out locations with ample natural light, while one experimented with 
fash settings. For instance, P7 sought to evade shadows, stating, 
“I’ll strategically reposition them to ensure optimal lighting without 
an excess of shadows or other visual distractions.” Additionally, one 
participant (P8) explored varying camera angles to enhance their 
photographic outcomes. P8 expressed a preference for home pho-
tography due to the favorable lighting conditions and exploring 
camera angles, explaining, “when I’m home, I feel it gives me the 
maximum amount of light and I get the best pictures. [...] I might 
move it around a couple of times so that it’ll describe it in the most 
detailed way.” 

We also posed questions regarding how often they review their 
photos, as this practice may infuence the quality of their images. 
In general, participants did not frequently review their photos. The 
majority (8 out of 12) reported checking their photos several times 
a month or less. Most participants reviewed their photos in-
dependently without sighted help. Participants who identifed 

Figure 3: Participants’ experience in taking photos. 

as legally blind (� = 4) predominantly relied on their own visual 
assessment. They utilized automatically generated image descrip-
tions from assistive tools like Seeing AI and iOS’s built-in image 
captioning function (� = 5). For instance, P12 would judge the 
quality of their photo based on text recognition results, stating, 
“What’s relevant are the OCR results I get from it. Especially if there 
is a garbled section that doesn’t fall into a normal OCR error pattern, 
then I know the photo’s not good.” A possible reason for independent 
reviewing behavior could be concerns about privacy issues when 
sharing their photos with sighted people [8, 80, 87, 90]. Few (3 out 
of 12) participants sought assistance from sighted individuals in 
their vicinity and only one (P1) utilized remote assistance through 
apps like Aira [6] and BeMyEyes [15]. 

To provide context for understanding the motivations behind 
participants’ photography, we asked questions about the subjects 
they captured in their photos. Participants cited documents for 
text recognition (� = 10), people (� = 9), objects (� = 8), food 
(� = 6), landscapes (� = 5), and miscellaneous items such as a 
scene and a bill (� = 4). Similarly, the most prevalent purposes 
for taking photos or recording videos were for text recognition 
(� = 10), video calls (� = 8), and object recognition (� = 5). These 
responses diverge somewhat from the fndings of a previous study 
conducted by Jayant et al. [39] in 2011, which suggested that blind 
individuals primarily took photos to capture friends or family for 
leisure, while their most sought-after camera function was text 
recognition. This result indicates the increasing prevalence 
of computer vision-based assistive applications among blind 
and low-vision people. However, many participants still found 
image framing challenging (� = 9), a difculty highlighted in prior 
studies [4, 39, 53]. For instance, P1 and P5 expressed concerns such 
as, “Making sure the information I’m trying to capture is in the frame 
of the camera,” and “I don’t know how far away from the object to hold 
the phone”, respectively. Participants also identifed other difculties 
such as maintaining focus on the object (� = 2), stabilizing the 
camera (� = 2), adjusting lighting conditions (� = 2), and orienting 
objects correctly (� = 2). 

4.2 Handling Image Recognition Errors 
To gain insights into the experiences and preferences regarding 
camera-based assistive applications, we conducted a comprehen-
sive inquiry into the apps they regularly utilize. Participants re-
ported using a total of eight camera-based assistive apps, with 
inquiries aimed at elucidating their experiences with each. Across 
20 participant-app pairs, the predominant choice was Seeing AI, 
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Figure 4: Camera-based assistive apps the participants have 
used regularly. 

as depicted in Figure 4. Additionally, participants employed other 
apps ofering text and object recognition functionalities, includ-
ing Google Lookout, KNFB Reader, Super Lidar, Supersense, and 
Voice Dream Scanner. Aira and Be My Eyes were also utilized for 
obtaining remote sighted assistance. Participants varied in the fre-
quency of app usage, with some employing them several times a 
day (� = 5), several times a week (� = 7), several times a month 
(� = 5), or once a month (� = 3). When asked about the frequency 
of encountering misrecognitions, responses varied, ranging from 
very frequently (� = 2) and occasionally (� = 5) to rarely (� = 6), 
very rarely (� = 1), and never (� = 6), as shown in Figure 5. How-
ever, it’s noteworthy that participants might not have perceived all 
errors. Thus, the reported frequency of errors could be lower than 
the actual frequency. 

We also inquired about participants’ strategies for capturing 
“good” photos when using each camera-based assistive app. To 
capture quality photos, participants employed strategies such as ad-
justing the distance and orientation of the camera (� = 9 and � = 7, 
respectively) and centering objects in the camera frame (� = 7). 
This refects the perceived challenge of image framing mentioned 
earlier. Additionally, participants utilized computer-generated feed-
back for blind photography (� = 8), such as the audio tone system 
described by P12, a user of Voice Dream Scanner, who stated, “It 
has this system where the louder and steadier the audio tone is, the 
better you are. There’s a certain tone. You’ve got the perfect picture 
and you snap it.” P1 highlighted comparable feedback from Seeing 
AI for taking a photo of a person, stating, “I listen to the prompts. 
It’ll tell me if the face is at the bottom left or top right. Or face is at 
center. When I hear that. That’s when I push the button.” 

We delved deeper into how participants addressed potential 
recognition errors they may have experienced with these apps. We 
queried participants about the frequency with which they validated 
predictions from the apps (Figure 5). In the majority of cases, par-
ticipants reported never verifying outputs while using the apps 
(� = 9). Many of them expressed trust in the app’s outputs without 
validation (� = 7), exemplifed by statements such as “if it says it’s 
a $5 bill, I believe it” (P2, Seeing AI), “I assume it’s correct when it 
reads it to me” (P6, Seeing AI), and “(I rarely verify the recognition 
results) because it’s pretty accurate.” (P12, Google Lookout). This 

Figure 5: Participants’ responses about frequency of encoun-
tered errors and verifcation of the output from the apps. 

response aligns with fndings from prior studies indicating that 
blind users tend to trust computer-vision systems [59]. Some partic-
ipants refrained from validating outputs because they found errors 
easy to detect (� = 6). Particularly with text recognition apps, they 
could identify errors if the outputs did not make sense. For instance, 
P11, who never verifed outputs from Seeing AI and Voice Dream 
Scanner, stated “If it tells me a certain thing, I’ll know that it actually 
meant certain numbers. The errors that are sometimes made, they 
kind of have patterns if you know what it is.” This response aligns 
with the fndings of a study by Guerreiro et al. [32], which suggests 
that errors are often acceptable when users understand the imper-
fections of the technology. When recognizing objects, participants 
compared app outputs with their expectations based on object tex-
tures, shapes, and weights. For instance, P6, who never validated 
outputs from Seeing AI, mentioned “[...] I could say sometimes it 
does get the canned soup name wrong, but I guess I don’t consider it 
wrong enough to call it wrong.” Some participants verifed outputs 
occasionally (� = 5), rarely (� = 3), or very rarely (� = 1). The 
most common reason for verifying results was uncertainty with 
a single output, prompting the need for multiple trials to make a 
decision (� = 8). For example, P3 explained, “if I’m consistently not 
getting a result with Seeing AI, then I’ll see if KNFB Reader will give 
me results.” 

While the frequency of encountering errors varied among 
the participants, the majority expressed concern about the 
misrecognitions. We delved into the impact of errors in camera-
based assistive technology on users’ experiences with it. In most 
cases, participants either agreed (� = 13) or strongly agreed (� = 3) 
that they cared about the misrecognitions from the apps, as depicted 
in Figure 6. Sometimes, however, they did not prioritize error cor-
rection because they could understand the outputs even with some 
errors. For instance, errors in text recognition did not signifcantly 
alter the meaning of the texts, or the apps were not utilized for 
sensitive or critical tasks. P8 (Seeing AI) expressed this sentiment, 
stating, “It’s not the most important thing, because I’m not using it 
for something critical.” When asked if there were situations where 
they cared more about errors, participants often cited text recogni-
tion scenarios involving important content such as bills, currency, 
expiration dates, or other crucial numbers (� = 11). For instance, 
P1, a Be My Eyes user, explained, “if they don’t see the expiration 
date properly on something and it’s expired, you know, I could get 
sick.” Other critical situations included reading directions for tasks 
(� = 5) and reviewing important documents (� = 5). P9 (Voice 
Dream Scanner) provided examples of such documents, stating, 
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Figure 6: Participants’ responses about handling errors. 

‘‘probably when it’s something that is connected to legal documents, 
fnancial statements, legal fnancial statements.” Responses regard-
ing the difculty of identifying misrecognitions varied. In half 
of all cases (� = 10), participants disagreed or strongly dis-
agreed that identifying errors was challenging when they 
could easily detect them using contextual cues such as sur-
rounding text or object textures. For example, P1 (Be My Eyes) 
remarked, “if they’re wrong, I know they’re wrong. So it’s not really 
a challenge to identify that it’s a misrecognition for me.” P12 (Seeing 
AI) similarly commented, “I can catch the errors as they come up 
because often, it’s not wrong enough for me to not be able to fgure out 
what it says.” Conversely, in other cases, participants (� = 9) found 
errors less distinguishable and challenging to identify. P8 (Seeing 
AI), acknowledging the possibility of missing errors, expressed, 
“If it’s wrong, I wouldn’t know. [...] I don’t even know whether it’s 
wrong or true.” Additionally, P9 recounted instances where sighted 
individuals detected errors from Voice Dream Scanner that she had 
missed, stating, “There have been occasions when I didn’t detect any-
thing and a sighted person may have indicated there was something 
that I just did not get.” When asked how they identifed errors, the 
majority (� = 10) of participants relied on contextual cues. For 
example, P1, using Seeing AI for text recognition, mentioned, “If 
the information reading isn’t very clear, if I can tell that it’s only 
reading a part of something then I have to readjust it.” Similarly, P6, 
identifying objects with Seeing AI, explained, “if I get a soup, and it’s 
not pronouncing the type of soup, that type of thing.” This behavior 
contrasts with the strategies of blind users in handling errors in 
navigation systems, where the majority sought sighted assistance 
when they encountered errors [32]. In other cases, participants 
sought clarifcation from sighted individuals (� = 5) or verifed 
app outputs through multiple trials (� = 5). 

5 Error Identifcation Results 
We conducted a comprehensive evaluation of participants’ experi-
ence with identifying errors within the context of object recognition. 
Our analysis centered on discerning patterns in participants’ error-
handling behavior throughout the task. Additionally, we examined 
the infuence of repeated object recognition eforts on error han-
dling by comparing the two attempts. Furthermore, participants’ 
feedback provided valuable insights into their attitudes toward 
errors encountered in object recognition. 

5.1 Identifying Object Recognition Errors 
Across the 30 trials (15 in the frst and 15 in the second attempt), the 
average accuracy of object recognition stood at 0.76 (�� = 0.10). 

Figure 7: Likert chart (top) and mosaic plot (bottom) of cer-
tainty levels and trial categories. The size of the rectangles 
in the mosaic plot corresponds to the number of trials. 

Table 3: Participants’ strategies to overcome “Don’t know”. 

Code Strategy Cases 

Object size Adjust the camera distance for better framing 11 
Rotate the object to show diferent sides 119 

Background Move the object to another place 23 
Hide the background objects with a paper 1 
Move the camera to display other sides of the object 29 
Change the way of holding the object 17Viewpoint Rotate the object to change perspective 5 
Rotate the camera (portrait and landscape) 1 
No change 10 

Participants encountered 7.33 incorrect recognitions on average 
(�� = 2.99), experiencing more false positives (� = 3.67, �� = 2.46) 
than false negatives (� = 0.83, �� = 1.03). When looking at 
whether participants could distinguish between correct and in-
correct recognitions, we fnd that on average, participants success-
fully identifed 21.83 (�� = 2.82) correct (true positives) and 3.17 
(�� = 2.44) incorrect (true negatives) recognition results. However, 
participants identifed errors at a proportion of 0.49 on average 
(�� = 0.32), indicating that they could detect less than half of 
the errors. This outcome is consistent with the over-reliance on 
image recognition results observed in a previous study by MacLeod 
et al. [59]. The low rate of error identifcation can be attributed to 
the challenge of distinguishing objects within the same category 
that share similar shapes, textures, and weights (e.g., coca-cola and 
diet coke) when limited visual information is available. 

When looking at participants’ strategies for recovery from “Don’t 
know” predictions, we fnd that they cluster around varying object 
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size, background, and viewpoint (shown in Table 3). This is excit-
ing as none of the participants reported having machine learning 
expertise. Yet, these patterns underscore participants’ awareness 
of the potential impact of object’s size, viewpoint and back-
ground on the performance of the object recognition model, 
drawing from parallels to how humans recognize objects indepen-
dent of size, viewpoint, location, and illumination [67]. On average, 
the object recognition app provided a “Don’t know” response in 8.2 
trials (�� = 4.17) out of 30 trials, totaling 216 cases; a “Don’t know” 
response would often be followed by subsequent a “Don’t know” 
responses with an average of 2.01 (�� = 0.89) occurrences. As de-
tailed in Table 3, when participants encountered “Don’t know,” the 
most prevalent (116 cases) approach to circumvent it was rotating 
the object to display its other side, thereby varying the viewpoint 
in the image, a strategy also prevalent among sighted non-experts 
in prior work [36]. The second most common approach (29 cases) 
also involved adjusting the viewpoint, with participants moving the 
camera instead of the object. Additionally, participants occasionally 
(23 cases) altered the background of the image by relocating the 
object to diferent positions. 

We examine participants certainty around the error identifca-
tion task by looking at their responses for each trial where they 
indicate their confdence in their judgment of the model prediction. 
Overall, participants expressed varying levels of certainty, report-
ing being “very certain,” “certain,” “uncertain,” and “very uncertain” 
across 17.67 (�� = 5.71), 7.83 (�� = 5.77), 2.25 (�� = 2.83), and 1.75 
(�� = 2.01) trials, respectively. As shown in Figure 7, we fnd that 
participants reported being either certain or very certain in 90% of 
true positive trials; trials where the object recognition is correct 
and the participant perceive it as such. This seems promising. Yet, 
they also reported being either certain or very certain in 84% of 
false positive trials; trials where the object recognition is incorrect 
but the participant perceive it as such. In contrast, participants 
reported being either certain or very certain in 76% of true negative 
trials, and 40% of false negative trials. This trend underscores a 
tendency for heightened certainty when participants per-
ceived recognition outcomes as correct. Overall, these fndings 
indicate a prevalent inclination among participants to place trust 
in the predictions from the object recognizer. 

Through analysis of trial completion time, we observe that par-
ticipants tend to make quicker decisions regarding the cor-
rectness of predictions when they were very certain (� = 
3.91�, �� = 2.70) compared to when they were just certain (� = 
8.48�, �� = 5.28), uncertain (� = 7.87�, �� = 2.71), or very un-
certain (� = 7.69�, �� = 8.30). A small correlation was observed 
between the level of certainty and the trial completion time, as 
indicated by the Pearson Correlation Coefcient (� = 0.27). 

5.2 Identifying Errors a Second Time 
In a real-world scenario, participants tend to interact with a recog-
nition application and similar objects over a long period and often 
learn to anticipate failures. In Section 5.1, we present aggregated 
observations from both attempts. To understand even at a small 
scale the efect of repeated use of the object recognition application 
on handling incorrect recognitions, in this section we compared 
the two attempts in the error identifcation task. Overall, we fnd 

that the proportion of errors identifed by the participants 
was not signifcantly1 diferent across the two with it being at 
0.51 on average (�� = 0.40) for the frst and 0.46 (�� = 0.36) for the 
second attempt. Regarding the level of certainty in the correctness 
of the recognitions, in the second attempt, participants were cer-
tain or very certain for a smaller proportion of trials across all 
four categories compared to the frst attempt, as shown in Figure 8. 
One of the reasons for this diference was inconsistent recognition 
results with the same object across the frst and second attempts, 
supported by P9’s response: “the second time around, they gave me 
diferent information. So then I became uncertain about trusting what 
it was telling me.” 

Furthermore, in the second attempt, the trial completion time 
signifcantly2 decreased to 4.22 seconds (�� = 2.33), compared to 
the frst, where we recorded a longer duration of 6.75 seconds (�� = 
3.15). This discrepancy suggests a meaningful variation between the 
attempts. Possible explanations for this observed diference could 
be attributed to participants’ increased familiarity with the task 
procedure in the second attempt, as well as quicker decision-making 
based on prior experience with the task in the frst attempt. 

5.3 Subjective Feedback 
While participants missed around half of the errors, they gener-
ally perceived identifying errors as not challenging, confrming 
the fnding from a prior study that BLV users have mixed feelings 
with both confdence and concerns regarding identifying errors in 
private object detection [89]. When asked about the difculty, the 
majority disagreed (� = 5), with some strongly disagreeing (� = 3). 
For instance, P8, who has low vision, was able to discern correct 
and incorrect predictions based on their vision and the textures 
of the object. Other participants identifed errors by comparing 

1We did not observe a statistically signifcant diference in the results of repeated mea-
sures Analysis of Variance (ANOVA) with Aligned Rank Transform (ART) regarding 
the number of errors and the proportion of errors (� > .05).
2The results of the repeated measures ANOVA with ART exhibited a statistically 
signifcant diference (�1,9 = 9.67, � = .013, �2 = 0.52). 

Figure 8: Percentages of the certainty levels across the cate-
gories of the trials in the frst and second attempts. 
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predictions across multiple trials. For example, P10 explained, “I 
didn’t recognize a mistake until the second similar object appeared. 
So like the two cans of the Lacroix apricot and Lacroix mango, one 
of them was incorrect because it was telling me apricot both times.” 
Errors were sometimes evident to participants because predicted 
and true objects had distinct textures, shapes, or weights, as noted 
by P12: “[...] for example, the diced tomatoes versus the chicken broth, 
chicken broth is more liquid. It was easy to identify that it was wrong.” 
On the other hand, three participants strongly agreed that identi-
fying errors was challenging. Among them, two mentioned that 
the recognition results were inconsistent with an object, making 
it difcult to determine their correctness. P9 said “Two things that 
seem similar, but the frst time they said they were the same, and then 
the next time putting them back, they said something diferent on one 
of them. So now I’m not sure. So I strongly agree, it was difcult for 
me to tell us it was in error.” Another participant mentioned that it 
was challenging to remember all objects explained at the beginning 
of the study, which complicated the decision-making regarding the 
correctness of recognition results. 

6 Discussion 
Our user study, exploratory in nature, shows both promising results 
and future research directions for supporting blind users’ interac-
tions with error-prone AI-infused technologies. In this section we 
discuss lessons learned and limitations that may afect the general-
izability of our fndings. 

6.1 Implications 
Enable users to leverage their expertise in reviewing errors 
independently. The fndings from the interview have shed light 
on an interesting trend: most participants expressed a preference 
for evaluating the quality of their photographs without the assis-
tance of sighted individuals or remote sighted aid services, such as 
Be My Eyes or Aira, when using camera-based assistive technolo-
gies. This preference seems to stem from a fundamental aspect of 
the utilization of AI-based systems – namely, the desire to carry 
out visual tasks independently when sighted assistance is unavail-
able. It further shows the preference of blind and low-vision users 
to utilize their expertise in assistive technology, such as integrat-
ing recognition results from multiple AI apps to identify errors. 
This personalized approach to using assistive technology was high-
lighted in a previous study [34]. This observation underscores a 
crucial need within the blind community: the ability for individu-
als to autonomously assess the quality of their photos, taking into 
account factors such as framing, background clutter, and blurriness. 

Addressing this challenge will likely require innovative approaches, 
particularly in the realm of computer vision. Developing techniques 
that can accurately quantify the quality factors of photographs with-
out relying on visual cues accessible only to sighted individuals 
holds great promise in this regard. Such techniques could poten-
tially leverage advanced algorithms and machine learning models 
to analyze various aspects of a photograph, from composition to 
sharpness, and provide meaningful feedback to blind and low-vision 
users. While some initial strides have been made in this area, such 
as image descriptors for blind users to assess photos for training 

personalized object recognition systems [35] and real-time feed-
back for blind users to capture high-quality photos [4, 61], there 
remains a need for further investigation. Specifcally, it is essen-
tial to evaluate the efectiveness of these descriptors in identifying 
errors and providing actionable insights to users. 

Incorporate the context and recognition system type in 
designing intuitive user interfaces. In our interviews, partici-
pants delineated diverse approaches to pinpointing errors in both 
object and text recognition. When utilizing text recognition, they 
relied heavily on contextual cues, as errors often manifested as de-
viations from the surrounding text’s logical fow. In contrast, with 
object recognition, participants leveraged intrinsic object prop-
erties such as weight and texture to gauge recognition accuracy. 
Additionally, certain applications with vision language models like 
Be My AI [5] furnish detailed image descriptions, enriching user 
experience. However, this potentially introduces more complex 
challenges in error detection due to the longer and more descrip-
tive texts [11], compared to the simple object labels in URCam. 
While our study primarily delved into object recognition, partici-
pant feedback underscores the pivotal role of recognition system 
type and contextual understanding in crafting user interfaces for 
error detection in camera-based assistive technologies. 

Consequently, our fndings ofer valuable insights for designing 
intuitive interfaces tailored to object recognition error identifca-
tion with images. For instance, our fndings suggest that providing 
descriptive information about diferent facets of an object in an 
image could mitigate error occurrences, as evidenced by partici-
pants frequently resorting to rotating objects to avoid "Don’t know" 
response from the URCam app during the error identifcation tasks. 
On the other hand, real-time camera-based assistive technologies 
may present unique challenges. We expect that blind users would 
employ diferent strategies for avoiding and validating errors since 
they can observe the efects of their camera framing immediately. 
This immediate feedback loop could encourage adaptive behaviors, 
such as repositioning the camera or altering the angle of capture 
to ensure better recognition accuracy. Future research should ex-
plore these adaptive strategies in depth, examining how real-time 
feedback infuences user interaction patterns and error mitigation 
techniques. 

Enable users to understand the performance of the object 
recognizer. While participants missed approximately half of the 
errors, their collective perception of error identifcation as non-
challenging was notable. When probed about the difculty level, 
the majority of participants disagreed, with some expressing strong 
disagreement. This observation underscores the nuanced difculty 
inherent in comprehending both the overall performance metrics 
of the object recognizer (i.e., error rate) and pinpointing individual 
errors, a challenge compounded for blind and low-vision users. This 
corroborates fndings from prior studies that showed the blind and 
low-vision users’ tendency to exhibit an overtrust on the output AI-
based assistive technologies such as image recognition systems [59] 
and automatic speech recognition [37]. 

While studies within the domain of Explainable AI have demon-
strated the potential efcacy of elucidating the certainty and ratio-
nale behind machine learning model outputs in enhancing perfor-
mance understanding and usability [79, 84], many of these studies 
rely on visual information such as heatmap [41] and plots [70] 
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inaccessible to blind users or have not been assessed with blind in-
dividuals. Consequently, to facilitate error identifcation efectively, 
forthcoming research endeavors must prioritize the development 
of methodologies that enable blind and low-vision users to assess 
the performance of object recognition systems. 

6.2 Limitations 
Variability between confned study conditions and real-world 
experience. A notable limitation of our study lies in the potential 
disparity between error identifcation under confned conditions 
and real-world usage scenarios. In the user study setting, partici-
pants were confned to a specifc study setup in their home envi-
ronment with limited variables such as lighting, background, and 
framing. Typically, they would place the study materials on a table 
and sit nearby. In a way, they were restricted in their ability to move 
around freely to fnd optimal positions for capturing photos, which 
could infuence the quality of the image and subsequently impact er-
ror identifcation. Furthermore, a somewhat ‘staged’ indoor setting 
may not fully replicate the diverse conditions encountered in real-
world scenarios, such as varying lighting conditions, backgrounds, 
and the presence of outdoor elements. Participants’ level of famil-
iarity and experience with the application may also difer between a 
one-of and real-world usage contexts. While participants received 
guidance and instructions during the user study, their experience 
in using the application in real-world settings may vary, potentially 
afecting their profciency in error identifcation. Last, the number 
and types of objects encountered in real-world scenarios may difer 
from the stimuli in the study. Real-world scenarios often involve a 
wider variety of objects and contexts, presenting unique challenges 
for error identifcation. 

Single-session limitation and potential longitudinal vari-
ability. An inherent limitation of our study is that the error identi-
fcation task was conducted within a single session at participants’ 
homes. While this approach allowed us to gather valuable data 
in a naturalistic setting, it may not fully capture the evolution of 
participants’ error identifcation abilities over time. Indeed, our ob-
servations revealed diferences between participants’ performance 
in the frst and second attempts of the error identifcation task. This 
discrepancy suggests that participants’ understanding of the object 
recognizer’s performance, the characteristics of objects, and optimal 
photo-taking techniques may have improved with repeated expo-
sure and experience. Consequently, a longitudinal study spanning 
multiple sessions could provide deeper insights into how partici-
pants’ error identifcation abilities evolve over time. 

Therefore, while our study provides valuable initial insights 
into error identifcation in a single-session context, future research 
employing longitudinal methodologies could ofer a more compre-
hensive understanding of the development and refnement of error 
identifcation experience and expertise that blind users build while 
interacting with their camera-based assistive technologies. 

7 Conclusion 
We explored the experiences of blind and low-vision people re-
garding photo-taking, usage of camera-based assistive systems, and 
error identifcation within these systems. Through semi-structured 
interviews, we uncovered that participants predominantly utilize 

photo-taking for the purpose of utilizing camera-based assistive 
systems, rather than solely for capturing memories or sharing with 
others. Additionally, participants revealed their inclination towards 
independently reviewing photo quality and identifying errors, de-
spite acknowledging the challenging nature of these tasks for ap-
proximately half of the participants. Furthermore, our empirical 
investigation through error identifcation tasks provided valuable 
insights into the challenges associated with identifying object recog-
nition errors. The results indicated that participants successfully 
identifed only around 50% of the errors, predominantly employing 
viewpoint, background, and object size alterations within images 
to mitigate errors. Additionally, we observed that the certainty 
regarding recognition correctness could be adversely afected by in-
consistent recognition outcomes in subsequent interactions. These 
fndings signifcantly contribute to our understanding and quan-
tifcation of the challenges in identifying object recognition errors 
within assistive technologies. 
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A Interview Questions 
In this section, you’ll fnd the questions posed to the participants 
during the user study. If a question has multiple-choice options, 
they’re listed in square brackets after the question. 

A.1 Demographic Information 
• What is your age? 
• What is your gender or gender identity? [woman, man, non-
binary] 

• What is your occupation? 
• What is your dominant hand? [left, right] 
• What phone do you use? Do you use the screen reader (e.g., 
VoiceOver)? 

A.1.1 Visual Impairments. 

• Do you have visual impairments? [yes, no] 
• Describe your current level of vision. 
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• For how many years have you had this level of vision ability? 

A.1.2 Hearing Impairments. 

• Do you have hearing impairments? [yes, no] 
• Describe your current level of hearing ability. 
• For how many years have you had this level of hearing 
ability? 

A.1.3 Motor Impairments. 

• Do you have motor impairments? [yes, no] 
• Describe your current level of motor ability. 
• For how many years have you had this level of motor ability? 

A.2 Technology Experience 
• How often do you use a mobile device? [never, once a month, 
several times a month, once a week, several times a week, 
once a day, several times a day] 

• How would you classify your level of familiarity with ma-
chine learning? [ 
– not familiar at all (have never heard of machine learning) 
– slightly familiar (have heard of it but don’t know what it 
does) 

– somewhat familiar (I have a broad understanding of what 
it is and what it does) 

– extremely familiar (I have extensive knowledge of machine 
learning) 

] 

A.3 Photo-taking Experience 
• How often do you take photos or record a video? [never, 
once a month, several times a month, once a week, several 
times a week, once a day, several times a day] 

• How often do you change the setting of the camera or some-
thing in the environment? For example, sitting at the same 
table, light condition, or using fash. [never, once a month, 
several times a month, once a week, several times a week, 
once a day, several times a day] 
– (if not “never”) Please describe for what tasks and why. 

• How often do you check if a photo is good after taking it? 
[never, once a month, several times a month, once a week, 
several times a week, once a day, several times a day] 
– Do you have a strategy for checking a photo? 

• Which of the following do you capture with a camera? (select 
all that apply) [document, people, landscapes, food, objects, 
others] 
– (for each, ) How often do you capture it with a camera? 

• On what devices do you interact with a camera like a smart-
phone, computer, smart glasses, or other devices? 

• With what applications or tasks do you use a camera? For 
example, posting on social media, video calls, assistive tech-
nologies, etc. 
– Why do (or don’t) you use a camera with these applications 
or tasks? 

• When you take a photo, how often do you feel confdent that 
it was good? [never, very rarely, rarely, occasionally, very 
frequently, always] 

Jonggi Hong and Hernisa Kacorri 

• What challenges do you face when taking photos or broadly 
manipulating a camera? 

A.4 Experience with Image-Based Assistive 
Tools 

(The following questions are asked for each application from the 
question above “With what applications or tasks do you use a 
camera?”) 

• How often do you use the app/tool? [never, once a month, 
several times a month, once a week, several times a week, 
once a day, several times a day] 

• How often do you use the app/tool when you don’t have 
access to sighted help? [never, once a month, several times 
a month, once a week, several times a week, once a day, 
several times a day] 
– Can you provide some examples of when this occurs? 

• How often would you notice that the app/tool was wrong 
after the fact? [never, once a month, several times a month, 
once a week, several times a week, once a day, several times 
a day] 

• How often do you encounter misrecognitions when you use 
the app/tool? [never, very rarely, rarely, occasionally, very 
frequently, always] 

• How often do you verify the recognition results when you 
use the app/tool? [never, very rarely, rarely, occasionally, 
very frequently, always] 
– Why? 

• I fnd the app/tool to be useful. [strongly disagree, disagree, 
neither agree nor disagree, agree, strongly agree] 

• I care about the misrecognitions of the app/tool? 
– Why? 

• Are there some situations in which you care about the mis-
recognitions more than others? 

• It is challenging to detect the misrecognitions. [strongly 
disagree, disagree, neither agree nor disagree, agree, strongly 
agree] 

• On what devices do you use the app/tool? 
• For what tasks do you use the app/tool? 
• What mechanisms do you use to detect the misrecognitions 
if any? 

• What kinds of objects do you typically try to recognize with 
the app/tool? 

• What is your strategy for taking good photos when using 
the app/tool? 

• Do you have a sense of how the app/tool works and how it 
is able to recognize the object? 

• How did you learn to use the app/tool when you frst in-
stalled it? 

• Do you like any functions or specifc interactions with the 
app/tool? 

• Do you dislike any functions or specifc interactions with 
the app/tool? 

• Are you aware of any mobile applications that allow you to 
personalize them by giving photos of objects or people that 
you care about? 
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– (If yes) List them. Which of them have you used before? 
Can you tell me a bit more about your experience? 

• It was difcult to identify errors made by the object recog-
nizer. [strongly disagree, disagree, neither agree nor disagree, 
agree, strongly agree] 
– Why? 

• How did you know when an object was incorrectly recog-
nized? 

A.5 Post-Task Questions 
We asked the following questions to the participants after the error 
identifcation task. 
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